Author(s):  
S Kamalakkannan ◽  
D. Kirubakaran

In this work, the fickleness of solar energy can be overcome by using Maximum Power Point Tracking algorithm (MPPT). Perturb and Observation (P&O) MPPT algorithm accomplish fast the maximum power point for rapid change of environmental conditions such as irradiance intensity and temperature. The MPPT algorithm applied to solar system keep the boost converter output constant. Output from boost converter is taken to three phase impedance-source inverter with RL load and grid system. Impedance-source inverter performs the transformation of variable DC output of the solar system in to near sinusoidal AC output. This near sinusoidal AC output consecutively is served to the RL load first and then to grid system. The simulation is carried out in matlab/simulink platform both for RL load and grid system and the simulation results are experimentally validated for RL load arrangement only.


2020 ◽  
Vol 6 (12) ◽  
pp. 13-20
Author(s):  
Sarika Goutami ◽  
Mr. Malaya S Dash

The use of renewable energy sources such as solar and wind energy can be extended to include residential and transportation applications due to environmental benefits. The main objective of this paper the solar energy system will be equipped with two type of converters DC/DC and DC/AC. The DC/DC boost converter is generally driven by the MPPT technique. We need to design a single controller for both the converters that would meet the power requirements and enhance its efficiency. To enhance the active power output by utilizing the designed controller for both the converters. The power enhancement would be done by utilizing a hybrid integrated constrained particle swarm optimization technique that is also modified to meet the MPPT requirements of the solar energy system. the result of The single controller has resulted in the following key improvements. The algorithm was first incorporated with the MPPT algorithm for the boost converter which has improved the DC voltage profile from 500 V to 595 V. The active power output from the system has enhanced to 113KW from 100Kw which is also stable as compared to the system having dual controllers for the converters. The PSO algorithm is so constrained in a manner such that the output voltage and current distortion has also reduced. The voltage output distortion level from the hybrid constrained PSO controllers was found to be 0.20% which is less than 0.26% of the system having dual controllers Also the THD level in the current output from the hybrid PSO integrated algorithm was reduced to 0.16% from 3.36% in the solar PV system modeled with dual controllers.


Sign in / Sign up

Export Citation Format

Share Document