Reversible Watermarking Scheme Based on Two-Dimensional Difference Expansion (2D-DE)

Author(s):  
Osamah M. Al-Qershi ◽  
Bee Ee Khoo
Author(s):  
Vazhora Malayil Manikandan ◽  
Nelapati Lava Prasad ◽  
Masilamani Vedhanayagam

Background: Medical image authentication is an important area which attempts to establish ownership authentication and data authentication of medical images. Aims: In this paper, we propose a new reversible watermarking scheme based on a novel half difference expansion technique for medical image forensics. Methods: Conventional difference expansion based reversible watermarking scheme generates watermarked images with less visual quality, and the embedding rate was considerably less due to the high probability of overflow or underflow. In the proposed scheme, the quality of the watermarked image has been improved by modifying the traditional difference expansion based watermarking scheme, half of the difference between two pixels will be expanded during watermarking. The modification of pixels during watermarking is limited by expanding half of the pixel difference, which helps to obtain watermarked images with better visual quality and improved embedding rate due to less chance of overflow or underflow during watermarking. We also propose a tamper detection localization process to detect the tampered regions from the watermarked image. Results: Experimental study of the proposed scheme on the standard medical images from Osrix medical image data set shows that the proposed watermarking scheme outperforms the existing schemes in terms of visual quality of the watermarked image and embedding rate. Conclusion: The overhead related to location map and parity information need to be addressed in future works to improve the proposed scheme.


2019 ◽  
Vol 9 (4) ◽  
pp. 642 ◽  
Author(s):  
Xu Xi ◽  
Xinchang Zhang ◽  
Weidong Liang ◽  
Qinchuan Xin ◽  
Pengcheng Zhang

Digital watermarking is important for the copyright protection of electronic data, but embedding watermarks into vector maps could easily lead to changes in map precision. Zero-watermarking, a method that does not embed watermarks into maps, could avoid altering vector maps but often lack of robustness. This study proposes a dual zero-watermarking scheme that improves watermark robustness for two-dimensional (2D) vector maps. The proposed scheme first extracts the feature vertices and non-feature vertices of the vector map with the Douglas-Peucker algorithm and subsequently constructs the Delaunay Triangulation Mesh (DTM) to form a topological feature sequence of feature vertices as well as the Singular Value Decomposition (SVD) matrix to form intrinsic feature sequence of non-feature vertices. Next, zero-watermarks are obtained by executing exclusive disjunction (XOR) with the encrypted watermark image under the Arnold scramble algorithm. The experimental results show that the scheme that synthesizes both the feature and non-feature information improves the watermark capacity. Making use of complementary information between feature and non-feature vertices considerably improves the overall robustness of the watermarking scheme. The proposed dual zero-watermarking scheme combines the advantages of individual watermarking schemes and is robust against such attacks as geometric attacks, vertex attacks and object attacks.


2018 ◽  
Vol 78 (12) ◽  
pp. 16433-16463 ◽  
Author(s):  
Asaad F. Qasim ◽  
Rob Aspin ◽  
Farid Meziane ◽  
Peter Hogg

Sign in / Sign up

Export Citation Format

Share Document