A low-complexity direction-of-arrival estimation algorithm for full-dimension massive MIMO systems

Author(s):  
Kai-Yu Yang ◽  
Jwo-Yuh Wu ◽  
Wen-Hsuan Li
Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 980 ◽  
Author(s):  
Hui Feng ◽  
Xiaoqing Zhao ◽  
Zhengquan Li ◽  
Song Xing

In this paper, a novel iterative discrete estimation (IDE) algorithm, which is called the modified IDE (MIDE), is proposed to reduce the computational complexity in MIMO detection in uplink massive MIMO systems. MIDE is a revision of the alternating direction method of multipliers (ADMM)-based algorithm, in which a self-updating method is designed with the damping factor estimated and updated at each iteration based on the Euclidean distance between the iterative solutions of the IDE-based algorithm in order to accelerate the algorithm’s convergence. Compared to the existing ADMM-based detection algorithm, the overall computational complexity of the proposed MIDE algorithm is reduced from O N t 3 + O N r N t 2 to O N t 2 + O N r N t in terms of the number of complex-valued multiplications, where Ntand Nr are the number of users and the number of receiving antennas at the base station (BS), respectively. Simulation results show that the proposed MIDE algorithm performs better in terms of the bit error rate (BER) than some recently-proposed approximation algorithms in MIMO detection of uplink massive MIMO systems.


2020 ◽  
Vol 9 (1) ◽  
pp. 1834-1837

Direction of arrival (DOA) estimation has, for quite some time been a challenging situation in most of the wireless communication applications, radar and sonar. The resolution of the direction of arrival estimation can be increased using the help of array signal processing. The performance of the direction of arrival estimation for multiple input multiple output(MIMO) radar systems has been reviewed for cyclic Multiple Signal Classification(MUSIC), extended cyclic MUSIC and Wideband cyclic MUSIC under Rayleigh fading environment. MUSIC and its variants have been taken into consideration for the analysis as these have been a very good parameter estimation technique due its low cost, high resolution and stability. Direction of Arrival estimation clubbed with cyclostationarity has been included into the new algorithm because of its immunity to noise and interference. The new algorithm along with cyclic correlations when applied to these signals, improves the performance of the entire system substantially. The performance of this wideband cyclic MUSIC high resolution direction of arrival estimation algorithm over the Rayleigh fading is analyzed in this paper. The simulation results citing the three methods show the performance of these methods in presence of the fading environments.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 301
Author(s):  
Jianhe Du ◽  
Jiaqi Li ◽  
Jing He ◽  
Yalin Guan ◽  
Heyun Lin

For multi-user millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the precise acquisition of channel state information (CSI) is a huge challenge. With the increase of the number of antennas at the base station (BS), the traditional channel estimation techniques encounter the problems of pilot training overhead and computational complexity increasing dramatically. In this paper, we develop a step-length optimization-based joint iterative scheme for multi-user mmWave massive MIMO systems to improve channel estimation performance. The proposed estimation algorithm provides the BS with full knowledge of all channel parameters involved in up- and down-links. Compared with existing algorithms, the proposed algorithm has higher channel estimation accuracy with low complexity. Moreover, the proposed scheme performs well even with a small number of training sequences and a large number of users. Simulation results are shown to demonstrate the performance of the proposed channel estimation algorithm.


IEEE Access ◽  
2015 ◽  
Vol 3 ◽  
pp. 2122-2128 ◽  
Author(s):  
Ting Wang ◽  
Bo Ai ◽  
Ruisi He ◽  
Zhangdui Zhong

Sign in / Sign up

Export Citation Format

Share Document