scholarly journals A Novel Iterative Discrete Estimation Algorithm for Low-Complexity Signal Detection in Uplink Massive MIMO Systems

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 980 ◽  
Author(s):  
Hui Feng ◽  
Xiaoqing Zhao ◽  
Zhengquan Li ◽  
Song Xing

In this paper, a novel iterative discrete estimation (IDE) algorithm, which is called the modified IDE (MIDE), is proposed to reduce the computational complexity in MIMO detection in uplink massive MIMO systems. MIDE is a revision of the alternating direction method of multipliers (ADMM)-based algorithm, in which a self-updating method is designed with the damping factor estimated and updated at each iteration based on the Euclidean distance between the iterative solutions of the IDE-based algorithm in order to accelerate the algorithm’s convergence. Compared to the existing ADMM-based detection algorithm, the overall computational complexity of the proposed MIDE algorithm is reduced from O N t 3 + O N r N t 2 to O N t 2 + O N r N t in terms of the number of complex-valued multiplications, where Ntand Nr are the number of users and the number of receiving antennas at the base station (BS), respectively. Simulation results show that the proposed MIDE algorithm performs better in terms of the bit error rate (BER) than some recently-proposed approximation algorithms in MIMO detection of uplink massive MIMO systems.

Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 301
Author(s):  
Jianhe Du ◽  
Jiaqi Li ◽  
Jing He ◽  
Yalin Guan ◽  
Heyun Lin

For multi-user millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the precise acquisition of channel state information (CSI) is a huge challenge. With the increase of the number of antennas at the base station (BS), the traditional channel estimation techniques encounter the problems of pilot training overhead and computational complexity increasing dramatically. In this paper, we develop a step-length optimization-based joint iterative scheme for multi-user mmWave massive MIMO systems to improve channel estimation performance. The proposed estimation algorithm provides the BS with full knowledge of all channel parameters involved in up- and down-links. Compared with existing algorithms, the proposed algorithm has higher channel estimation accuracy with low complexity. Moreover, the proposed scheme performs well even with a small number of training sequences and a large number of users. Simulation results are shown to demonstrate the performance of the proposed channel estimation algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Van-Khoi Dinh ◽  
Minh-Tuan Le ◽  
Vu-Duc Ngo ◽  
Chi-Hieu Ta

In this paper, a low-complexity linear precoding algorithm based on the principal component analysis technique in combination with the conventional linear precoders, called Principal Component Analysis Linear Precoder (PCA-LP), is proposed for massive MIMO systems. The proposed precoder consists of two components: the first one minimizes the interferences among neighboring users and the second one improves the system performance by utilizing the Principal Component Analysis (PCA) technique. Numerical and simulation results show that the proposed precoder has remarkably lower computational complexity than its low-complexity lattice reduction-aided regularized block diagonalization using zero forcing precoding (LC-RBD-LR-ZF) and lower computational complexity than the PCA-aided Minimum Mean Square Error combination with Block Diagonalization (PCA-MMSE-BD) counterparts while its bit error rate (BER) performance is comparable to those of the LC-RBD-LR-ZF and PCA-MMSE-BD ones.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Byung-Jin Lee ◽  
Sang-Lim Ju ◽  
Nam-il Kim ◽  
Kyung-Seok Kim

Massive multiple-input multiple-output (MIMO) systems are a core technology designed to achieve the performance objectives defined for 5G wireless communications. They achieve high spectral efficiency, reliability, and diversity gain. However, the many radio frequency chains required in base stations equipped with a high number of transmit antennas imply high hardware costs and computational complexity. Therefore, in this paper, we investigate the use of a transmit-antenna selection scheme, with which the number of required radio frequency chains in the base station can be reduced. This paper proposes two efficient transmit-antenna selection (TAS) schemes designed to consider a trade-off between performance and computational complexity in massive MIMO systems. The spectral efficiency and computational complexity of the proposed schemes are analyzed and compared with existing TAS schemes, showing that the proposed algorithms increase the TAS performance and can be used in practical systems. Additionally, the obtained results enable a better understanding of how TAS affects massive MIMO systems.


2019 ◽  
Vol 8 (3) ◽  
pp. 917-920 ◽  
Author(s):  
Anis Elgabli ◽  
Ali Elghariani ◽  
Vaneet Aggarwal ◽  
Mark R. Bell

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 218 ◽  
Author(s):  
Kifayatullah Bangash ◽  
Imran Khan ◽  
Jaime Lloret ◽  
Antonio Leon

Traditional Minimum Mean Square Error (MMSE) detection is widely used in wireless communications, however, it introduces matrix inversion and has a higher computational complexity. For massive Multiple-input Multiple-output (MIMO) systems, this detection complexity is very high due to its huge channel matrix dimension. Therefore, low-complexity detection technology has become a hot topic in the industry. Aiming at the problem of high computational complexity of the massive MIMO channel estimation, this paper presents a low-complexity algorithm for efficient channel estimation. The proposed algorithm is based on joint Singular Value Decomposition (SVD) and Iterative Least Square with Projection (SVD-ILSP) which overcomes the drawback of finite sample data assumption of the covariance matrix in the existing SVD-based semi-blind channel estimation scheme. Simulation results show that the proposed scheme can effectively reduce the deviation, improve the channel estimation accuracy, mitigate the impact of pilot contamination and obtain accurate CSI with low overhead and computational complexity.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 39341-39351 ◽  
Author(s):  
Imran A. Khoso ◽  
Xiaoming Dai ◽  
M. Nauman Irshad ◽  
Ali Khan ◽  
Xiyuan Wang

Sign in / Sign up

Export Citation Format

Share Document