Approximating Algorithm of Wavelet Neural Networks with Self-adaptive Learning Rate

Author(s):  
Gan Xusheng ◽  
Duanmu Jingshu ◽  
Wang Qing
Author(s):  
MOHAMED ZINE EL ABIDINE SKHIRI ◽  
MOHAMED CHTOUROU

This paper investigates the applicability of the constructive approach proposed in Ref. 1 to wavelet neural networks (WNN). In fact, two incremental training algorithms will be presented. The first one, known as one pattern at a time (OPAT) approach, is the WNN version of the method applied in Ref. 1. The second approach however proposes a modified version of Ref. 1, known as one epoch at a time (OEAT) approach. In the OPAT approach, the input patterns are trained incrementally one by one until all patterns are presented. If the algorithm gets stuck in a local minimum and could not escape after a fixed number of successive attempts, then a new wavelet called also wavelon, will be recruited. In the OEAT approach however, all the input patterns are presented one epoch at a time. During one epoch, each pattern is trained only once until all patterns are trained. If the resulting overall error is reduced, then all the patterns will be retrained for one more epoch. Otherwise, a new wavelon will be recruited. To guarantee the convergence of the trained networks, an adaptive learning rate has been introduced using the discrete Lyapunov stability theorem.


2021 ◽  
Vol 11 (20) ◽  
pp. 9468
Author(s):  
Yunyun Sun ◽  
Yutong Liu ◽  
Haocheng Zhou ◽  
Huijuan Hu

Deep learning proves its promising results in various domains. The automatic identification of plant diseases with deep convolutional neural networks attracts a lot of attention at present. This article extends stochastic gradient descent momentum optimizer and presents a discount momentum (DM) deep learning optimizer for plant diseases identification. To examine the recognition and generalization capability of the DM optimizer, we discuss the hyper-parameter tuning and convolutional neural networks models across the plantvillage dataset. We further conduct comparison experiments on popular non-adaptive learning rate methods. The proposed approach achieves an average validation accuracy of no less than 97% for plant diseases prediction on several state-of-the-art deep learning models and holds a low sensitivity to hyper-parameter settings. Experimental results demonstrate that the DM method can bring a higher identification performance, while still maintaining a competitive performance over other non-adaptive learning rate methods in terms of both training speed and generalization.


Sign in / Sign up

Export Citation Format

Share Document