Hardware architecture for high-accuracy real-time pedestrian detection with CoHOG features

Author(s):  
Masayuki Hiromoto ◽  
Ryusuke Miyamoto
Author(s):  
Reshma P ◽  
Muneer VK ◽  
Muhammed Ilyas P

Face recognition is a challenging task for the researches. It is very useful for personal verification and recognition and also it is very difficult to implement due to all different situation that a human face can be found. This system makes use of the face recognition approach for the computerized attendance marking of students or employees in the room environment without lectures intervention or the employee. This system is very efficient and requires very less maintenance compared to the traditional methods. Among existing methods PCA is the most efficient technique. In this project Holistic based approach is adapted. The system is implemented using MATLAB and provides high accuracy.


2021 ◽  
Vol 11 (11) ◽  
pp. 4758
Author(s):  
Ana Malta ◽  
Mateus Mendes ◽  
Torres Farinha

Maintenance professionals and other technical staff regularly need to learn to identify new parts in car engines and other equipment. The present work proposes a model of a task assistant based on a deep learning neural network. A YOLOv5 network is used for recognizing some of the constituent parts of an automobile. A dataset of car engine images was created and eight car parts were marked in the images. Then, the neural network was trained to detect each part. The results show that YOLOv5s is able to successfully detect the parts in real time video streams, with high accuracy, thus being useful as an aid to train professionals learning to deal with new equipment using augmented reality. The architecture of an object recognition system using augmented reality glasses is also designed.


Author(s):  
Parastoo Soleimani ◽  
David W. Capson ◽  
Kin Fun Li

AbstractThe first step in a scale invariant image matching system is scale space generation. Nonlinear scale space generation algorithms such as AKAZE, reduce noise and distortion in different scales while retaining the borders and key-points of the image. An FPGA-based hardware architecture for AKAZE nonlinear scale space generation is proposed to speed up this algorithm for real-time applications. The three contributions of this work are (1) mapping the two passes of the AKAZE algorithm onto a hardware architecture that realizes parallel processing of multiple sections, (2) multi-scale line buffers which can be used for different scales, and (3) a time-sharing mechanism in the memory management unit to process multiple sections of the image in parallel. We propose a time-sharing mechanism for memory management to prevent artifacts as a result of separating the process of image partitioning. We also use approximations in the algorithm to make hardware implementation more efficient while maintaining the repeatability of the detection. A frame rate of 304 frames per second for a $$1280 \times 768$$ 1280 × 768 image resolution is achieved which is favorably faster in comparison with other work.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Davide Dardari ◽  
Nicoló Decarli ◽  
Anna Guerra ◽  
Ashraf Al-Rimawi ◽  
Víctor Marín Puchades ◽  
...  

In this paper, an ultrawideband localization system to improve the cyclists’ safety is presented. The architectural solutions proposed consist of tags placed on bikes, whose positions have to be estimated, and anchors, acting as reference nodes, located at intersections and/or on vehicles. The peculiarities of the localization system in terms of accuracy and cost enable its adoption with enhanced risk assessment units situated on the infrastructure/vehicle, depending on the architecture chosen, as well as real-time warning to the road users. Experimental results reveal that the localization error, in both static and dynamic conditions, is below 50 cm in most of the cases.


2021 ◽  
Author(s):  
Haotian Wu ◽  
YuRan Wang ◽  
Hongbin Ma ◽  
Baokui Li ◽  
Ying Jin

Sign in / Sign up

Export Citation Format

Share Document