Real Time Person Recognition and Attendance Marking Using Holistic Based Approach

Author(s):  
Reshma P ◽  
Muneer VK ◽  
Muhammed Ilyas P

Face recognition is a challenging task for the researches. It is very useful for personal verification and recognition and also it is very difficult to implement due to all different situation that a human face can be found. This system makes use of the face recognition approach for the computerized attendance marking of students or employees in the room environment without lectures intervention or the employee. This system is very efficient and requires very less maintenance compared to the traditional methods. Among existing methods PCA is the most efficient technique. In this project Holistic based approach is adapted. The system is implemented using MATLAB and provides high accuracy.

2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


Author(s):  
Dr.C K Gomathy ◽  
T. suneel ◽  
Y.Jeeevan Kumar Reddy

The Face recognition and image or video recognition are popular research topics in biometric technology. Real-time face recognition is an exciting field and a rapidly evolving issue. Key component analysis (PCA) may be a statistical technique collectively called correlational analysis . The goal of PCA is to scale back the massive amount of knowledge storage to the dimensions of the functional space required to render the face recognition system. The wide one-dimensional pixel vector generated from the two-dimensional image of the face and therefore the basic elements of the spatial function are designed for face recognition using PCA. this is often the projection of your own space. Sufficient space is decided by the brand. specialise in the eigenvectors of the covariance matrix of the fingerprint image collection. i'm building a camera-based real-time face recognition system and installing an algorithm. Use OpenCV, Haar Cascade, Eigen face, Fisher Face, LBPH and Python for program development.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Tanasai Sucontphunt

This paper describes a practical technique for 3D artistic face modeling where a human identity can be inserted into a 3D artistic face. This approach can automatically extract the human identity from a 3D human face model and then transfer it to a 3D artistic face model in a controllable manner. Its core idea is to construct a face geometry space and a face texture space based on a precollected 3D face dataset. Then, these spaces are used to extract and blend the face models together based on their facial identities and styles. This approach can enable a novice user to interactively generate various artistic faces quickly using a slider control. Also, it can run in real-time on an off-the-shelf computer without GPU acceleration. This approach can be broadly used in various 3D artistic face modeling applications such as a rapid creation of a cartoon crowd with different cartoon characters.


Author(s):  
Norikazu Ikoma ◽  
◽  
Gefan Zhang

Decorations of face such as enlarging eyes, whitening skin, rendering face slim, and so on are commercially successful in amusement arcades especially in Japan for still image and off-line processing. This paper proposes to decorate human face in video on-line and in real-time processing. Face posture estimation using particle filter plays a key role to decorate the face by precisely determining position of the eyes as well as determining regional position of face. Our proposed method conducts two decorations, enlarging eyes and whitening skin, based on the estimation result of face posture. Real-time implementation of the proposed method has been demonstrated for real scenes of indoor situation.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Rong Wang

In real-world applications, the image of faces varies with illumination, facial expression, and poses. It seems that more training samples are able to reveal possible images of the faces. Though minimum squared error classification (MSEC) is a widely used method, its applications on face recognition usually suffer from the problem of a limited number of training samples. In this paper, we improve MSEC by using the mirror faces as virtual training samples. We obtained the mirror faces generated from original training samples and put these two kinds of samples into a new set. The face recognition experiments show that our method does obtain high accuracy performance in classification.


1994 ◽  
Vol 59 (2) ◽  
pp. 254-261 ◽  
Author(s):  
M. Bichsel ◽  
A.P. Pentland

Author(s):  
KWANG IN KIM ◽  
JIN HYUNG KIM ◽  
KEECHUL JUNG

This paper presents a real-time face recognition system. For the system to be real time, no external time-consuming feature extraction method is used, rather the gray-level values of the raw pixels that make up the face pattern are fed directly to the recognizer. In order to absorb the resulting high dimensionality of the input space, support vector machines (SVMs), which are known to work well even in high-dimensional space, are used as the face recognizer. Furthermore, a modified form of polynomial kernel (local correlation kernel) is utilized to take account of prior knowledge about facial structures and is used as the alternative feature extractor. Since SVMs were originally developed for two-class classification, their basic scheme is extended for multiface recognition by adopting one-per-class decomposition. In order to make a final classification from several one-per-class SVM outputs, a neural network (NN) is used as the arbitrator. Experiments with ORL database show a recognition rate of 97.9% and speed of 0.22 seconds per face with 40 classes.


Sign in / Sign up

Export Citation Format

Share Document