Multi-Level Adaptive Separable Convolution for Large-Motion Video Frame Interpolation

Author(s):  
Ruth Wijma ◽  
Shaodi You ◽  
Yu Li
2013 ◽  
Vol 23 (7) ◽  
pp. 1235-1248 ◽  
Author(s):  
Zhefei Yu ◽  
Houqiang Li ◽  
Zhangyang Wang ◽  
Zeng Hu ◽  
Chang Wen Chen

2020 ◽  
Vol 34 (07) ◽  
pp. 10607-10614 ◽  
Author(s):  
Xianhang Cheng ◽  
Zhenzhong Chen

Learning to synthesize non-existing frames from the original consecutive video frames is a challenging task. Recent kernel-based interpolation methods predict pixels with a single convolution process to replace the dependency of optical flow. However, when scene motion is larger than the pre-defined kernel size, these methods yield poor results even though they take thousands of neighboring pixels into account. To solve this problem in this paper, we propose to use deformable separable convolution (DSepConv) to adaptively estimate kernels, offsets and masks to allow the network to obtain information with much fewer but more relevant pixels. In addition, we show that the kernel-based methods and conventional flow-based methods are specific instances of the proposed DSepConv. Experimental results demonstrate that our method significantly outperforms the other kernel-based interpolation methods and shows strong performance on par or even better than the state-of-the-art algorithms both qualitatively and quantitatively.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1251 ◽  
Author(s):  
Ahn ◽  
Jeong ◽  
Kim ◽  
Kwon ◽  
Yoo

Recently, video frame interpolation research developed with a convolutional neural network has shown remarkable results. However, these methods demand huge amounts of memory and run time for high-resolution videos, and are unable to process a 4K frame in a single pass. In this paper, we propose a fast 4K video frame interpolation method, based upon a multi-scale optical flow reconstruction scheme. The proposed method predicts low resolution bi-directional optical flow, and reconstructs it into high resolution. We also proposed consistency and multi-scale smoothness loss to enhance the quality of the predicted optical flow. Furthermore, we use adversarial loss to make the interpolated frame more seamless and natural. We demonstrated that the proposed method outperforms the existing state-of-the-art methods in quantitative evaluation, while it runs up to 4.39× faster than those methods for 4K videos.


Sign in / Sign up

Export Citation Format

Share Document