scholarly journals Video Frame Interpolation via Deformable Separable Convolution

2020 ◽  
Vol 34 (07) ◽  
pp. 10607-10614 ◽  
Author(s):  
Xianhang Cheng ◽  
Zhenzhong Chen

Learning to synthesize non-existing frames from the original consecutive video frames is a challenging task. Recent kernel-based interpolation methods predict pixels with a single convolution process to replace the dependency of optical flow. However, when scene motion is larger than the pre-defined kernel size, these methods yield poor results even though they take thousands of neighboring pixels into account. To solve this problem in this paper, we propose to use deformable separable convolution (DSepConv) to adaptively estimate kernels, offsets and masks to allow the network to obtain information with much fewer but more relevant pixels. In addition, we show that the kernel-based methods and conventional flow-based methods are specific instances of the proposed DSepConv. Experimental results demonstrate that our method significantly outperforms the other kernel-based interpolation methods and shows strong performance on par or even better than the state-of-the-art algorithms both qualitatively and quantitatively.

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1251 ◽  
Author(s):  
Ahn ◽  
Jeong ◽  
Kim ◽  
Kwon ◽  
Yoo

Recently, video frame interpolation research developed with a convolutional neural network has shown remarkable results. However, these methods demand huge amounts of memory and run time for high-resolution videos, and are unable to process a 4K frame in a single pass. In this paper, we propose a fast 4K video frame interpolation method, based upon a multi-scale optical flow reconstruction scheme. The proposed method predicts low resolution bi-directional optical flow, and reconstructs it into high resolution. We also proposed consistency and multi-scale smoothness loss to enhance the quality of the predicted optical flow. Furthermore, we use adversarial loss to make the interpolated frame more seamless and natural. We demonstrated that the proposed method outperforms the existing state-of-the-art methods in quantitative evaluation, while it runs up to 4.39× faster than those methods for 4K videos.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 619 ◽  
Author(s):  
Ha-Eun Ahn ◽  
Jinwoo Jeong ◽  
Je Woo Kim

Visual quality and algorithm efficiency are two main interests in video frame interpolation. We propose a hybrid task-based convolutional neural network for fast and accurate frame interpolation of 4K videos. The proposed method synthesizes low-resolution frames, then reconstructs high-resolution frames in a coarse-to-fine fashion. We also propose edge loss, to preserve high-frequency information and make the synthesized frames look sharper. Experimental results show that the proposed method achieves state-of-the-art performance and performs 2.69x faster than the existing methods that are operable for 4K videos, while maintaining comparable visual and quantitative quality.


2020 ◽  
Vol 10 (18) ◽  
pp. 6245
Author(s):  
Quang Nhat Tran ◽  
Shih-Hsuan Yang

Frame interpolation, which generates an intermediate frame given adjacent ones, finds various applications such as frame rate up-conversion, video compression, and video streaming. Instead of using complex network models and additional data involved in the state-of-the-art frame interpolation methods, this paper proposes an approach based on an end-to-end generative adversarial network. A combined loss function is employed, which jointly considers the adversarial loss (difference between data models), reconstruction loss, and motion blur degradation. The objective image quality metric values reach a PSNR of 29.22 dB and SSIM of 0.835 on the UCF101 dataset, similar to those of the state-of-the-art approach. The good visual quality is notably achieved by approximately one-fifth computational time, which entails possible real-time frame rate up-conversion. The interpolated output can be further improved by a GAN based refinement network that better maintains motion and color by image-to-image translation.


Author(s):  
Yu-Lun Liu ◽  
Yi-Tung Liao ◽  
Yen-Yu Lin ◽  
Yung-Yu Chuang

Video frame interpolation algorithms predict intermediate frames to produce videos with higher frame rates and smooth view transitions given two consecutive frames as inputs. We propose that: synthesized frames are more reliable if they can be used to reconstruct the input frames with high quality. Based on this idea, we introduce a new loss term, the cycle consistency loss. The cycle consistency loss can better utilize the training data to not only enhance the interpolation results, but also maintain the performance better with less training data. It can be integrated into any frame interpolation network and trained in an end-to-end manner. In addition to the cycle consistency loss, we propose two extensions: motion linearity loss and edge-guided training. The motion linearity loss approximates the motion between two input frames to be linear and regularizes the training. By applying edge-guided training, we further improve results by integrating edge information into training. Both qualitative and quantitative experiments demonstrate that our model outperforms the state-of-the-art methods. The source codes of the proposed method and more experimental results will be available at https://github.com/alex04072000/CyclicGen.


2014 ◽  
Vol 51 ◽  
pp. 443-492 ◽  
Author(s):  
B. de Wilde ◽  
A. W. Ter Mors ◽  
C. Witteveen

Multi-agent Pathfinding is a relevant problem in a wide range of domains, for example in robotics and video games research. Formally, the problem considers a graph consisting of vertices and edges, and a set of agents occupying vertices. An agent can only move to an unoccupied, neighbouring vertex, and the problem of finding the minimal sequence of moves to transfer each agent from its start location to its destination is an NP-hard problem. We present Push and Rotate, a new algorithm that is complete for Multi-agent Pathfinding problems in which there are at least two empty vertices. Push and Rotate first divides the graph into subgraphs within which it is possible for agents to reach any position of the subgraph, and then uses the simple push, swap, and rotate operations to find a solution; a post-processing algorithm is also presented that eliminates redundant moves. Push and Rotate can be seen as extending Luna and Bekris's Push and Swap algorithm, which we showed to be incomplete in a previous publication. In our experiments we compare our approach with the Push and Swap, MAPP, and Bibox algorithms. The latter algorithm is restricted to a smaller class of instances as it requires biconnected graphs, but can nevertheless be considered state of the art due to its strong performance. Our experiments show that Push and Swap suffers from incompleteness, MAPP is generally not competitive with Push and Rotate, and Bibox is better than Push and Rotate on randomly generated biconnected instances, while Push and Rotate performs better on grids.


2021 ◽  
Vol 183 (15) ◽  
pp. 6-10
Author(s):  
Hrishikesh Mahajan ◽  
Yash Shekhadar ◽  
Shebin Silvister ◽  
Dheeraj Komandur ◽  
Nitin Pise

Data ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 87
Author(s):  
Sara Ferreira ◽  
Mário Antunes ◽  
Manuel E. Correia

Deepfake and manipulated digital photos and videos are being increasingly used in a myriad of cybercrimes. Ransomware, the dissemination of fake news, and digital kidnapping-related crimes are the most recurrent, in which tampered multimedia content has been the primordial disseminating vehicle. Digital forensic analysis tools are being widely used by criminal investigations to automate the identification of digital evidence in seized electronic equipment. The number of files to be processed and the complexity of the crimes under analysis have highlighted the need to employ efficient digital forensics techniques grounded on state-of-the-art technologies. Machine Learning (ML) researchers have been challenged to apply techniques and methods to improve the automatic detection of manipulated multimedia content. However, the implementation of such methods have not yet been massively incorporated into digital forensic tools, mostly due to the lack of realistic and well-structured datasets of photos and videos. The diversity and richness of the datasets are crucial to benchmark the ML models and to evaluate their appropriateness to be applied in real-world digital forensics applications. An example is the development of third-party modules for the widely used Autopsy digital forensic application. This paper presents a dataset obtained by extracting a set of simple features from genuine and manipulated photos and videos, which are part of state-of-the-art existing datasets. The resulting dataset is balanced, and each entry comprises a label and a vector of numeric values corresponding to the features extracted through a Discrete Fourier Transform (DFT). The dataset is available in a GitHub repository, and the total amount of photos and video frames is 40,588 and 12,400, respectively. The dataset was validated and benchmarked with deep learning Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) methods; however, a plethora of other existing ones can be applied. Generically, the results show a better F1-score for CNN when comparing with SVM, both for photos and videos processing. CNN achieved an F1-score of 0.9968 and 0.8415 for photos and videos, respectively. Regarding SVM, the results obtained with 5-fold cross-validation are 0.9953 and 0.7955, respectively, for photos and videos processing. A set of methods written in Python is available for the researchers, namely to preprocess and extract the features from the original photos and videos files and to build the training and testing sets. Additional methods are also available to convert the original PKL files into CSV and TXT, which gives more flexibility for the ML researchers to use the dataset on existing ML frameworks and tools.


2020 ◽  
pp. 1-16
Author(s):  
Meriem Khelifa ◽  
Dalila Boughaci ◽  
Esma Aïmeur

The Traveling Tournament Problem (TTP) is concerned with finding a double round-robin tournament schedule that minimizes the total distances traveled by the teams. It has attracted significant interest recently since a favorable TTP schedule can result in significant savings for the league. This paper proposes an original evolutionary algorithm for TTP. We first propose a quick and effective constructive algorithm to construct a Double Round Robin Tournament (DRRT) schedule with low travel cost. We then describe an enhanced genetic algorithm with a new crossover operator to improve the travel cost of the generated schedules. A new heuristic for ordering efficiently the scheduled rounds is also proposed. The latter leads to significant enhancement in the quality of the schedules. The overall method is evaluated on publicly available standard benchmarks and compared with other techniques for TTP and UTTP (Unconstrained Traveling Tournament Problem). The computational experiment shows that the proposed approach could build very good solutions comparable to other state-of-the-art approaches or better than the current best solutions on UTTP. Further, our method provides new valuable solutions to some unsolved UTTP instances and outperforms prior methods for all US National League (NL) instances.


AI ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 261-273
Author(s):  
Mario Manzo ◽  
Simone Pellino

COVID-19 has been a great challenge for humanity since the year 2020. The whole world has made a huge effort to find an effective vaccine in order to save those not yet infected. The alternative solution is early diagnosis, carried out through real-time polymerase chain reaction (RT-PCR) tests or thorax Computer Tomography (CT) scan images. Deep learning algorithms, specifically convolutional neural networks, represent a methodology for image analysis. They optimize the classification design task, which is essential for an automatic approach with different types of images, including medical. In this paper, we adopt a pretrained deep convolutional neural network architecture in order to diagnose COVID-19 disease from CT images. Our idea is inspired by what the whole of humanity is achieving, as the set of multiple contributions is better than any single one for the fight against the pandemic. First, we adapt, and subsequently retrain for our assumption, some neural architectures that have been adopted in other application domains. Secondly, we combine the knowledge extracted from images by the neural architectures in an ensemble classification context. Our experimental phase is performed on a CT image dataset, and the results obtained show the effectiveness of the proposed approach with respect to the state-of-the-art competitors.


2021 ◽  
Author(s):  
Danila Piatov ◽  
Sven Helmer ◽  
Anton Dignös ◽  
Fabio Persia

AbstractWe develop a family of efficient plane-sweeping interval join algorithms for evaluating a wide range of interval predicates such as Allen’s relationships and parameterized relationships. Our technique is based on a framework, components of which can be flexibly combined in different manners to support the required interval relation. In temporal databases, our algorithms can exploit a well-known and flexible access method, the Timeline Index, thus expanding the set of operations it supports even further. Additionally, employing a compact data structure, the gapless hash map, we utilize the CPU cache efficiently. In an experimental evaluation, we show that our approach is several times faster and scales better than state-of-the-art techniques, while being much better suited for real-time event processing.


Sign in / Sign up

Export Citation Format

Share Document