large motion
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 24)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 154 (A1) ◽  
Author(s):  
H Enshaei ◽  
R Birmingham ◽  
E Mesbahi

Six degrees of freedom motion response tests of a Ro-Ro model have been carried out in irregular waves under intact conditions. A stationary model was tested in different sea states for following, astern quartering and beam seas. The investigation was limited to the effect of encountered frequency components and associated magnitude of energy of the ship’s motion responses. Analysis of heave, pitch and roll motions confirmed the vulnerability of the model to certain frequency ranges resulting in an adverse effect on the responses, and these were closely related to its natural frequencies. It was confirmed that the roll motion maintains its highest oscillation around the natural frequency in all sea conditions regardless of heading angles. However spectral analysis of the heave and pitch responses revealed the wave peak frequency. Roll is magnified when the peak frequency of wave approaches the natural roll frequency; therefore keeping them apart avoids a large motion response. It was concluded that peak frequency and associated magnitude are two important inherent characteristics of motion responses. Detection of influential parameters of encountered wave through heave and pitch responses could be utilised to limit a large ship’s motion at sea.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110344
Author(s):  
Jinhai Gao ◽  
Xiaoqiang Han ◽  
Lina Hao ◽  
Ligang Chen

Compared with the traditional rigid mechanism, the flexible mechanism has more advantages, which play an important role in critical situations such as microsurgery, IC (integrated circuit) fabrication/detection, and some precision operating environment. Especially, there is an increasing need for 3-DOF (degrees-of-freedom) compliant translational micro-platform (CTMP) providing good performance characteristics with large motion range, low cross coupling, and high spatial density. Decoupled topology design of the CTMP can easily realize these merits without increasing the difficulty of controlling. This paper proposes a new three DOF compliant hybrid micromanipulator which have large range of motion up to 100 μm × 100 μm × 100 μm in the direction in the dimension of 90 mm × 90 mm × 50 mm, smaller cross-axis coupling (the max coupling only 2.5%) than the initial XY compliant platform in XY axial.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1918
Author(s):  
Chen Zhang ◽  
Zhengyu Xia ◽  
Joohee Kim

Common video-based object detectors exploit temporal contextual information to improve the performance of object detection. However, detecting objects under challenging conditions has not been thoroughly studied yet. In this paper, we focus on improving the detection performance for challenging events such as aspect ratio change, occlusion, or large motion. To this end, we propose a video object detection network using event-aware ConvLSTM and object relation networks. Our proposed event-aware ConvLSTM is able to highlight the area where those challenging events take place. Compared with traditional ConvLSTM, with the proposed method it is easier to exploit temporal contextual information to support video-based object detectors under challenging events. To further improve the detection performance, an object relation module using supporting frame selection is applied to enhance the pooled features for target ROI. It effectively selects the features of the same object from one of the reference frames rather than all of them. Experimental results on ImageNet VID dataset show that the proposed method achieves mAP of 81.0% without any post processing and can handle challenging events efficiently in video object detection.


2021 ◽  
Vol 161 ◽  
pp. S264-S266
Author(s):  
V. Taasti ◽  
D. Hattu ◽  
F. Vaassen ◽  
R. Canters ◽  
M. Velders ◽  
...  

2021 ◽  
Vol 161 ◽  
pp. S169-S171
Author(s):  
C.O. Ribeiro ◽  
E.W. Korevaar ◽  
S. Visser ◽  
A.C. Hengeveld ◽  
G.G. Marmitt ◽  
...  

10.37236/8886 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mariusz Woźniak

A vertex colouring of a graph is asymmetric if it is preserved only by the identity automorphism. The minimum number of colours needed for an asymmetric colouring of a graph $G$ is called the asymmetric colouring number or distinguishing number $D(G)$ of $G$. It is well known that $D(G)$ is closely related to the least number of vertices moved by any non-identity automorphism, the so-called motion $m(G)$ of $G$. Large motion is usually correlated with small $D(G)$. Recently, Babai posed the question whether there exists a function $f(d)$ such that every connected, countable graph $G$ with maximum degree $\Delta(G)\leq d$ and motion $m(G)>f(d)$ has an asymmetric $2$-colouring, with at most finitely many exceptions for every degree. We prove the following result: if $G$ is a connected, countable graph of maximum degree at most 4, without an induced claw $K_{1,3}$, then $D(G)= 2$ whenever $m(G)>2$, with three exceptional small graphs. This answers the question of Babai for $d=4$ in the class of~claw-free graphs.


2021 ◽  
Author(s):  
Vicki Trier Taasti ◽  
Djoya Hattu ◽  
Femke Vaassen ◽  
Richard Canters ◽  
Marije Velders ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 2015
Author(s):  
Yusheng Wang ◽  
Yidong Lou ◽  
Yi Zhang ◽  
Weiwei Song ◽  
Fei Huang ◽  
...  

With the ability to provide long range, highly accurate 3D surrounding measurements, while lowering the device cost, non-repetitive scanning Livox lidars have attracted considerable interest in the last few years. They have seen a huge growth in use in the fields of robotics and autonomous vehicles. In virtue of their restricted FoV, they are prone to degeneration in feature-poor scenes and have difficulty detecting the loop. In this paper, we present a robust multi-lidar fusion framework for self-localization and mapping problems, allowing different numbers of Livox lidars and suitable for various platforms. First, an automatic calibration procedure is introduced for multiple lidars. Based on the assumption of rigidity of geometric structure, the transformation between two lidars can be configured through map alignment. Second, the raw data from different lidars are time-synchronized and sent to respective feature extraction processes. Instead of sending all the feature candidates for estimating lidar odometry, only the most informative features are selected to perform scan registration. The dynamic objects are removed in the meantime, and a novel place descriptor is integrated for enhanced loop detection. The results show that our proposed system achieved better results than single Livox lidar methods. In addition, our method outperformed novel mechanical lidar methods in challenging scenarios. Moreover, the performance in feature-less and large motion scenarios has also been verified, both with approvable accuracy.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110248
Author(s):  
Marco Ceccarelli ◽  
Cuauhtemoc Morales-Cruz

This article presents an experimental characterization of ExoFinger, a finger exoskeleton for finger motion assistance. The exoskeletal device is analyzed in experimental lab activities that have been conducted with different users to characterize the operation performance and to demonstrate the adaptability of the proposed device. The behavior of this device is characterized in detail using sensors to measure finger motion and power consumption. Sensor measures also demonstrate the given motion assistance performance in terms of an electrical finger response and finger temperature by resulting in an efficient solution with a large motion range of a finger in assistance of recovering finger motion.


Sign in / Sign up

Export Citation Format

Share Document