Comparative Study of Dynamical Requirement Impacts on System Design of Notional Aircraft Dc and Ac Electric Power Systems

Author(s):  
Le Kong ◽  
Fei Fred Wang
2015 ◽  
Vol 775 ◽  
pp. 373-377
Author(s):  
John Morales ◽  
Julio Montesdeoca ◽  
Guillermo Guidi

It is clear that lightning strokes produce overvoltages on Transmission Lines (TLs), which can be higher that the Basic Insulator Level (BIL), generating a fault or short circuit. Thus, in order to adequately analyze when a lightning hits on a TL, it is necessary to simulate different elements corresponding to Electric Power Systems (EPSs) as real as possible. In this context, transmission towers are considered crucial parameters in lightning studies, which must be correctly selected and simulated in order to consider reflected voltage waveforms from cross arms. Based on the above said, this paper presents a comparative study corresponding to the transmission tower simulation using two models. The first uses inductances, and the second uses distributed parameters impedances characterized by their impedance and travel time. This paper presents voltage variations that exist in each phase, using different lightning features. Alternative Transients Program (ATP) is used to simulate the TL model considering different lightning currents and the two tower models. Results show that the impedance model analyze reflected waveforms, while that the inductance model does not analyze this issue.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1688 ◽  
Author(s):  
C. Birk Jones ◽  
Matthew Lave ◽  
William Vining ◽  
Brooke Marshall Garcia

An increase in Electric Vehicles (EV) will result in higher demands on the distribution electric power systems (EPS) which may result in thermal line overloading and low voltage violations. To understand the impact, this work simulates two EV charging scenarios (home- and work-dominant) under potential 2030 EV adoption levels on 10 actual distribution feeders that support residential, commercial, and industrial loads. The simulations include actual driving patterns of existing (non-EV) vehicles taken from global positioning system (GPS) data. The GPS driving behaviors, which explain the spatial and temporal EV charging demands, provide information on each vehicles travel distance, dwell locations, and dwell durations. Then, the EPS simulations incorporate the EV charging demands to calculate the power flow across the feeder. Simulation results show that voltage impacts are modest (less than 0.01 p.u.), likely due to robust feeder designs and the models only represent the high-voltage (“primary”) system components. Line loading impacts are more noticeable, with a maximum increase of about 15%. Additionally, the feeder peak load times experience a slight shift for residential and mixed feeders (≈1 h), not at all for the industrial, and 8 h for the commercial feeder.


Sign in / Sign up

Export Citation Format

Share Document