Domain Specific Feature Transfer for Hybrid Domain Adaptation

Author(s):  
Wei Pengfei ◽  
Ke Yiping ◽  
Goh Chi Keong
2020 ◽  
Vol 34 (07) ◽  
pp. 11386-11393 ◽  
Author(s):  
Shuang Li ◽  
Chi Liu ◽  
Qiuxia Lin ◽  
Binhui Xie ◽  
Zhengming Ding ◽  
...  

Tremendous research efforts have been made to thrive deep domain adaptation (DA) by seeking domain-invariant features. Most existing deep DA models only focus on aligning feature representations of task-specific layers across domains while integrating a totally shared convolutional architecture for source and target. However, we argue that such strongly-shared convolutional layers might be harmful for domain-specific feature learning when source and target data distribution differs to a large extent. In this paper, we relax a shared-convnets assumption made by previous DA methods and propose a Domain Conditioned Adaptation Network (DCAN), which aims to excite distinct convolutional channels with a domain conditioned channel attention mechanism. As a result, the critical low-level domain-dependent knowledge could be explored appropriately. As far as we know, this is the first work to explore the domain-wise convolutional channel activation for deep DA networks. Moreover, to effectively align high-level feature distributions across two domains, we further deploy domain conditioned feature correction blocks after task-specific layers, which will explicitly correct the domain discrepancy. Extensive experiments on three cross-domain benchmarks demonstrate the proposed approach outperforms existing methods by a large margin, especially on very tough cross-domain learning tasks.


Author(s):  
Reza Mazloom ◽  
Hongmin Li ◽  
Doina Caragea ◽  
Cornelia Caragea ◽  
Muhammad Imran

Huge amounts of data generated on social media during emergency situations is regarded as a trove of critical information. The use of supervised machine learning techniques in the early stages of a crisis is challenged by the lack of labeled data for that event. Furthermore, supervised models trained on labeled data from a prior crisis may not produce accurate results, due to inherent crisis variations. To address these challenges, the authors propose a hybrid feature-instance-parameter adaptation approach based on matrix factorization, k-nearest neighbors, and self-training. The proposed feature-instance adaptation selects a subset of the source crisis data that is representative for the target crisis data. The selected labeled source data, together with unlabeled target data, are used to learn self-training domain adaptation classifiers for the target crisis. Experimental results have shown that overall the hybrid domain adaptation classifiers perform better than the supervised classifiers learned from the original source data.


2020 ◽  
Vol 34 (04) ◽  
pp. 6243-6250 ◽  
Author(s):  
Qian Wang ◽  
Toby Breckon

Unsupervised domain adaptation aims to address the problem of classifying unlabeled samples from the target domain whilst labeled samples are only available from the source domain and the data distributions are different in these two domains. As a result, classifiers trained from labeled samples in the source domain suffer from significant performance drop when directly applied to the samples from the target domain. To address this issue, different approaches have been proposed to learn domain-invariant features or domain-specific classifiers. In either case, the lack of labeled samples in the target domain can be an issue which is usually overcome by pseudo-labeling. Inaccurate pseudo-labeling, however, could result in catastrophic error accumulation during learning. In this paper, we propose a novel selective pseudo-labeling strategy based on structured prediction. The idea of structured prediction is inspired by the fact that samples in the target domain are well clustered within the deep feature space so that unsupervised clustering analysis can be used to facilitate accurate pseudo-labeling. Experimental results on four datasets (i.e. Office-Caltech, Office31, ImageCLEF-DA and Office-Home) validate our approach outperforms contemporary state-of-the-art methods.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4718
Author(s):  
Tho Nguyen Duc ◽  
Chanh Minh Tran ◽  
Phan Xuan Tan ◽  
Eiji Kamioka

Imitation learning is an effective approach for an autonomous agent to learn control policies when an explicit reward function is unavailable, using demonstrations provided from an expert. However, standard imitation learning methods assume that the agents and the demonstrations provided by the expert are in the same domain configuration. Such an assumption has made the learned policies difficult to apply in another distinct domain. The problem is formalized as domain adaptive imitation learning, which is the process of learning how to perform a task optimally in a learner domain, given demonstrations of the task in a distinct expert domain. We address the problem by proposing a model based on Generative Adversarial Network. The model aims to learn both domain-shared and domain-specific features and utilizes it to find an optimal policy across domains. The experimental results show the effectiveness of our model in a number of tasks ranging from low to complex high-dimensional.


Sign in / Sign up

Export Citation Format

Share Document