A Hybrid Domain Adaptation Approach for Identifying Crisis-Relevant Tweets

Author(s):  
Reza Mazloom ◽  
Hongmin Li ◽  
Doina Caragea ◽  
Cornelia Caragea ◽  
Muhammad Imran

Huge amounts of data generated on social media during emergency situations is regarded as a trove of critical information. The use of supervised machine learning techniques in the early stages of a crisis is challenged by the lack of labeled data for that event. Furthermore, supervised models trained on labeled data from a prior crisis may not produce accurate results, due to inherent crisis variations. To address these challenges, the authors propose a hybrid feature-instance-parameter adaptation approach based on matrix factorization, k-nearest neighbors, and self-training. The proposed feature-instance adaptation selects a subset of the source crisis data that is representative for the target crisis data. The selected labeled source data, together with unlabeled target data, are used to learn self-training domain adaptation classifiers for the target crisis. Experimental results have shown that overall the hybrid domain adaptation classifiers perform better than the supervised classifiers learned from the original source data.

2021 ◽  
Vol 36 (1) ◽  
pp. 609-615
Author(s):  
Mandhapati Rajesh ◽  
Dr.K. Malathi

Aim: Predicting the Heartdiseases using medical parameters of cardiac patients to get a good accuracy rate using machine learning methods like innovative Decision Tree (DT) algorithm. Materials and Methods: Supervised Machine learning Techniques with innovative Decision Tree (N = 20) and K Nearest Neighbour (KNN) (N = 20) are performed with five different datasets at each time to record five samples. Results: The Decision Tree is used to predict heart disease with the help of various medical conditions, the accuracy is achieved for DT is 98% and KNN is 72.2%. The two algorithms Decision Tree and KNN are statistically insignificant (=.737) with the independent sample T-Test value (p<0.005) with a confidence level of 95%. Conclusion: Prediction and classification of heart disease significantly seem to be better in DT than KNN.


Upon application of supervised machine learning techniques Intrusion Detection Systems (IDSs) are successful in detecting known attacks as they use predefined attack signatures. However, detecting zero-day attacks is challenged because of the scarcity of the labeled instances for zero-day attacks. Advanced research on IDS applies the concept of Transfer Learning (TL) to compensate the scarcity of labeled instances of zero-day attacks by making use of abundant labeled instances present in related domain(s). This paper explores the potential of Inductive and Transductive transfer learning for detecting zero-day attacks experimentally, where inductive TL deals with the presence of minimal labeled instances in the target domain and transductive TL deals with the complete absence of labeled instances in the target domain. The concept of domain adaptation with manifold alignment (DAMA) is applied in inductive TL where the variant of DAMA is proposed to handle transductive TL due to non-availability of labeled instances. NSL_KDD dataset is used for experimentation


Sentiment analysis or opinion mining has gained much attention in recent years.With the constantly evolving social networks and internet marketing sites, reviews and blogs have been obtained among them, they act as an significant source for future analysis and better decision making. These reviews are naturally unstructured and thus require pre processing and further classification to gain the significant information for future use. These reviews and blogs can be of different types such as positive, negative and neutral . Supervised machine learning techniquess help to classify these reviews. In this paper five machine learning algorithms (K-Nearest Neighbors (KNN), Decision Tree, Artificial neural networks (ANNs), Naïve bayes and Support Vector Machine (SVM))are used for classification of sentiments. These algorithms are analyzed usingTwitter dataset. Performance analysis of these algorithms are done by using various performance measures such as Accuracy, precision, recall and F-measure. The evaluation of these techniques on Twitter datasetshowed predictive ability of Machine Learning in opinion mining


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


Author(s):  
Augusto Cerqua ◽  
Roberta Di Stefano ◽  
Marco Letta ◽  
Sara Miccoli

AbstractEstimates of the real death toll of the COVID-19 pandemic have proven to be problematic in many countries, Italy being no exception. Mortality estimates at the local level are even more uncertain as they require stringent conditions, such as granularity and accuracy of the data at hand, which are rarely met. The “official” approach adopted by public institutions to estimate the “excess mortality” during the pandemic draws on a comparison between observed all-cause mortality data for 2020 and averages of mortality figures in the past years for the same period. In this paper, we apply the recently developed machine learning control method to build a more realistic counterfactual scenario of mortality in the absence of COVID-19. We demonstrate that supervised machine learning techniques outperform the official method by substantially improving the prediction accuracy of the local mortality in “ordinary” years, especially in small- and medium-sized municipalities. We then apply the best-performing algorithms to derive estimates of local excess mortality for the period between February and September 2020. Such estimates allow us to provide insights about the demographic evolution of the first wave of the pandemic throughout the country. To help improve diagnostic and monitoring efforts, our dataset is freely available to the research community.


Author(s):  
Linwei Hu ◽  
Jie Chen ◽  
Joel Vaughan ◽  
Soroush Aramideh ◽  
Hanyu Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document