Integrated Monitoring System for Rail Damage in High Speed Railway Turnout

Author(s):  
Rong Chen ◽  
Ping Wang ◽  
Hao Xu
2013 ◽  
Vol 409-410 ◽  
pp. 1496-1501 ◽  
Author(s):  
Jing Mang Xu ◽  
Ping Wang ◽  
Hao Xu

Electric switch machine locks the crossing rail in the working direction and checks the working status of the crossing. With the increase of train speed, the ZD(J)9 electric switch machine cant satisfy the equipment of high speed railway, This paper studied the optimization; in order to study the lock calculation of nose rail after conversion, a dynamic model is established to research the influence of working status of the crossing. It indicates that for the first traction point, the stress and deformation are mainly affected by scant displacement between nose rail and wing rail; for the second traction point, they are affected by the gap between nose rail and spacer; fastener lateral stiffness doesnt influence the stress status, but the lateral fastener stiffness should not be too small.


2015 ◽  
Author(s):  
PING WANG ◽  
JIELING XIAO ◽  
XI SHENG ◽  
DAYONG QIN

2011 ◽  
Vol 255-260 ◽  
pp. 3988-3992 ◽  
Author(s):  
Rong Chen ◽  
Wang Ping ◽  
Yang Song

Train/turnout dynamic interaction is exacerbated by high speed of passenger train and heavy load of freight train, and wheel/rail relation is one of the key factors that determine the running characteristics of the train. Focusing on three types of wheel treads with different profiles (TB tapered tread, LM worn tread, LMA worn tread), longitudinal distribution of the contact geometric parameters along the switch rail and nose rail of 350km/h No.18 turnout are calculated, such as tread equivalent conicity, coefficient of contact angle difference, roll angle factor, gravitational stiffness of wheelset, gravitational angle stiffness of wheelset, etc. Results show that: (1) LMA worn tread produces the smallest irregularity; (2) wheel/rail vertical impact at the frog will become bigger; (3) Top profile of switch rail and nose rail should be designed according to the wheel tread type so as to mitigate the wheel/rail dynamic interaction and increase the safety and stability of a train.


2011 ◽  
Vol 474-476 ◽  
pp. 1599-1604 ◽  
Author(s):  
Rong Chen ◽  
Wang Ping ◽  
Xian Kui Wei

Railway turnout, an integrated mechatronics equipment of track technology, is one of key equipments that control the running speed of high-speed railway. During the conversion of turnout, the friction, inclusion of foreign matter and deficient displacement of conversion caused by its own structural characteristics may lead to severe wheel/rail impact. In order to study the influence of conversion deviation on safety and comfort of a train during passing the turnout, train/turnout dynamic model was applied. Taking No.18 turnout on a Passenger Dedicated Line (PDL) with 350km/h as a case study, when the train passed it, the influences of its deficient displacement and inclusion of foreign matter on the following dynamic responses were studied, i.e. wheel load distribution, wheel flange force, dynamic stress of rail, wheel unloading rate, derailment coefficient, as well as the lateral displacements of switch rail and nose rail, etc. Result shows that: (1) the deficient displacement and the inclusion of foreign matter will severely influence the normal operation of the turnout, so the safety and comfort during the train passing through turnout may be affected; (2) During the conversion of turnout, its deficient displacement should be controlled properly, and the foreign matter should be removed during routine maintenance, moreover, a reliable detection system should be set.


Sign in / Sign up

Export Citation Format

Share Document