Colour image authentication based on a self-embedding technique

Author(s):  
I. Kostopoulos ◽  
S.A.M. Gilani ◽  
A.N. Skodras
2020 ◽  
Vol 6 (3) ◽  
pp. 92-99
Author(s):  
A. Zhuvikin

One of the most promising application of the digital watermarking is the selective image authentication (SIA) systems. In order to implement such a system one requires an embedding algorithm with an appropriate capacity. In addition, an embedding method is to be robust for the class of non-malicious manipulations which the SIA system is designed for. We propose the new method which has a significant embedding capacity while still being tolerant to JPEG compression, brightness and contrast adjustments. This was possible due to the extension of the well-known discrete wavelet transform embedding technique. We propose two-step embedding scheme and the use of image histogram equalisation and recovering operations. The experiment results show acceptable tolerance to JPEG compression, brightness and contrast adjustments with good visual quality in terms of PSNR just after embedding.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2610
Author(s):  
Tung-Shou Chen ◽  
Xiaoyu Zhou ◽  
Rong-Chang Chen ◽  
Wien Hong ◽  
Kia-Sheng Chen

In this paper, we propose a high-quality image authentication method based on absolute moment block truncation coding (AMBTC) compressed images. The existing AMBTC authentication methods may not be able to detect certain malicious tampering due to the way that the authentication codes are generated. In addition, these methods also suffer from their embedding technique, which limits the improvement of marked image quality. In our method, each block is classified as either a smooth block or a complex one based on its smoothness. To enhance the image quality, we toggle bits in bitmap of smooth block to generate a set of authentication codes. The pixel pair matching (PPM) technique is used to embed the code that causes the least error into the quantization values. To reduce the computation cost, we only use the original and flipped bitmaps to generate authentication codes for complex blocks, and select the one that causes the least error for embedment. The experimental results show that the proposed method not only obtains higher marked image quality but also achieves better detection performance compared with prior works.


Author(s):  
D. C. Brindley ◽  
M. McGill

Morphological and cytochemical studies of platelets have reported a surface coat, or glycocalyx, external to the plasma membrane (1). Biochemical analyses have likewise confirmed the highly adsorptive properties of platelets as transporters of coagulation factors (2). However, visualization of the platelet membrane by conventional EM procedures does not reflect this special relationship between the platelet and its plasma environment. By the routine method of alcohol-propylene oxide dehydration for Epon embedding, the lipid bilayer nature of the platelet membrane appears similar to other blood cells (Fig. 1). A new rapid embedding technique using dimethoxypropane (DMP) as dehydrating agent (13) has permitted ultrastructural analyses of the surface features of the platelet-plasma interface.Aliquots of human or rabbit platelet-rich plasma (PRP) were added to equal volumes of 6% glutaraldehyde in Millonig's buffer at 37° for 45 minutes, rinsed in buffer and postfixed in 1% osmium in Millonig's buffer for 45 minutes.


Sign in / Sign up

Export Citation Format

Share Document