A spatial domain secret image embedding technique with image authentication feature

Author(s):  
S.K. Felix Yu ◽  
Zi-Xin Xu ◽  
Yuk-Hee Chan ◽  
Pak-Kong Lun
2020 ◽  
Vol 6 (3) ◽  
pp. 92-99
Author(s):  
A. Zhuvikin

One of the most promising application of the digital watermarking is the selective image authentication (SIA) systems. In order to implement such a system one requires an embedding algorithm with an appropriate capacity. In addition, an embedding method is to be robust for the class of non-malicious manipulations which the SIA system is designed for. We propose the new method which has a significant embedding capacity while still being tolerant to JPEG compression, brightness and contrast adjustments. This was possible due to the extension of the well-known discrete wavelet transform embedding technique. We propose two-step embedding scheme and the use of image histogram equalisation and recovering operations. The experiment results show acceptable tolerance to JPEG compression, brightness and contrast adjustments with good visual quality in terms of PSNR just after embedding.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Naveed Ahmed Azam

This paper presents a novel image encryption technique based on multiple right translated AES Gray S-boxes (RTSs) and phase embedding technique. First of all, a secret image is diffused with a fuzzily selected RTS. The fuzzy selection of RTS is variable and depends upon pixels of the secret image. Then two random masks are used to enhance confusion in the spatial and frequency domains of the diffused secret image. These random masks are generated by applying two different RTSs on a host image. The decryption process of the proposed cryptosystem needs the host image for generation of masks. It is therefore, necessary, to secure the host image from unauthorized users. This task is achieved by diffusing the host image with another RTS and embedding the diffused secret image into the phase terms of the diffused host image. The cryptographic strength of the proposed security system is measured by implementing it on several images and applying rigorous analyses. Performance comparison of the proposed security technique with some of the state-of-the-art security systems, including S-box cryptosystem and steganocryptosystems, is also performed. Results and comparison show that the newly developed cryptosystem is more secure.


2018 ◽  
Vol 77 (20) ◽  
pp. 27107-27121
Author(s):  
Ying-Chin Chen ◽  
Jung-San Lee ◽  
Hong-Chi Su

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2610
Author(s):  
Tung-Shou Chen ◽  
Xiaoyu Zhou ◽  
Rong-Chang Chen ◽  
Wien Hong ◽  
Kia-Sheng Chen

In this paper, we propose a high-quality image authentication method based on absolute moment block truncation coding (AMBTC) compressed images. The existing AMBTC authentication methods may not be able to detect certain malicious tampering due to the way that the authentication codes are generated. In addition, these methods also suffer from their embedding technique, which limits the improvement of marked image quality. In our method, each block is classified as either a smooth block or a complex one based on its smoothness. To enhance the image quality, we toggle bits in bitmap of smooth block to generate a set of authentication codes. The pixel pair matching (PPM) technique is used to embed the code that causes the least error into the quantization values. To reduce the computation cost, we only use the original and flipped bitmaps to generate authentication codes for complex blocks, and select the one that causes the least error for embedment. The experimental results show that the proposed method not only obtains higher marked image quality but also achieves better detection performance compared with prior works.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Sang-Ho Shin ◽  
Gil-Je Lee ◽  
Kee-Young Yoo

Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a(t,n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variablem, and change a range of primepin sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and1.74tlog2⁡mbit-per-pixel (bpp), respectively.


Sign in / Sign up

Export Citation Format

Share Document