Low-rank and sparse matrix recovery based on a randomized rank-revealing decomposition

Author(s):  
Maboud F. Kaloorazi ◽  
Rodrigo C. de Lamare
Author(s):  
Sampurna Biswas ◽  
Sunrita Poddar ◽  
Soura Dasgupta ◽  
Raghuraman Mudumbai ◽  
Mathews Jacob

2014 ◽  
Vol 635-637 ◽  
pp. 1056-1059 ◽  
Author(s):  
Bao Yan Wang ◽  
Xin Gang Wang

Key and difficult points of background subtraction method lie in looking for an ideal background modeling under complex scene. Stacking the individual frames as columns of a big matrix, background parts can be viewed as a low-rank background matrix because of large similarity among individual frames, yet foreground parts can be viewed as a sparse matrix as foreground parts play a small role in individual frames. Thus the process of video background modeling is in fact a process of low-rank matrix recovery. Background modeling based on low-rank matrix recovery can separate foreground images from background at the same time without pre-training samples, besides, the approach is robust to illumination changes. However, there exist some shortcomings in background modeling based on low-rank matrix recovery by analyzing numerical experiments, which is developed from three aspects.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Qingshan You ◽  
Qun Wan ◽  
Haiwen Xu

The principal component prsuit with reduced linear measurements (PCP_RLM) has gained great attention in applications, such as machine learning, video, and aligning multiple images. The recent research shows that strongly convex optimization for compressive principal component pursuit can guarantee the exact low-rank matrix recovery and sparse matrix recovery as well. In this paper, we prove that the operator of PCP_RLM satisfies restricted isometry property (RIP) with high probability. In addition, we derive the bound of parameters depending only on observed quantities based on RIP property, which will guide us how to choose suitable parameters in strongly convex programming.


2013 ◽  
Vol 49 (1) ◽  
pp. 35-36 ◽  
Author(s):  
Dai‐Qiang Chen ◽  
Li‐Zhi Cheng

2020 ◽  
Vol 10 (3) ◽  
pp. 1024-1037 ◽  
Author(s):  
Peng Wang ◽  
◽  
Chengde Lin ◽  
Xiaobo Yang ◽  
Shengwu Xiong ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 343
Author(s):  
Yanbin Zhang ◽  
Long-Ting Huang ◽  
Yangqing Li ◽  
Kai Zhang ◽  
Changchuan Yin

In order to reduce the amount of hyperspectral imaging (HSI) data transmission required through hyperspectral remote sensing (HRS), we propose a structured low-rank and joint-sparse (L&S) data compression and reconstruction method. The proposed method exploits spatial and spectral correlations in HSI data using sparse Bayesian learning and compressive sensing (CS). By utilizing a simultaneously L&S data model, we employ the information of the principal components and Bayesian learning to reconstruct the hyperspectral images. The simulation results demonstrate that the proposed method is superior to LRMR and SS&LR methods in terms of reconstruction accuracy and computational burden under the same signal-to-noise tatio (SNR) and compression ratio.


Sign in / Sign up

Export Citation Format

Share Document