A Study on Matrix Derivatives for the Sensitivity Analysis of Electromagnetic Eigenvalue Problems

Author(s):  
Rolf Schuhmann ◽  
Philipp Jorkowski
2011 ◽  
Vol 9 ◽  
pp. 85-89 ◽  
Author(s):  
N. Burschäpers ◽  
S. Fiege ◽  
R. Schuhmann ◽  
A. Walther

Abstract. We analyze the sensitivity of dielectric waveguides with respect to design parameters such as permittivity values or simple geometric dependencies. Based on a discretization using the Finite Integration Technique the eigenvalue problem for the wave number is shown to be non-Hermitian with possibly complex solutions even in the lossless case. Nevertheless, the sensitivity can be obtained with negligible numerical effort. Numerical examples demonstrate the validity of the approach.


Author(s):  
Andrzej Garstecki ◽  
Witold Kakol

Abstract Structural Sensitivity Analysis is performed using the direct differentiation method for buckling and free vibration problems of prismatic thin-walled structures employing the Finite Strip Method. The sensitivity of eigenvalues (critical stresses and free frequencies) with respect to variation of thickness of plate members and with respect to shape-type variations is considered. The differentiation is carried out employing analytical and semi-analytical methods. Numerical examples illustrate the sensitivity of thin-walled plates stiffened with ribs and thin-walled beams. The examples also serve for discussion of numerical efficiency and accuracy of the presented methods.


2017 ◽  
Vol 15 ◽  
pp. 215-221 ◽  
Author(s):  
Philipp Jorkowski ◽  
Rolf Schuhmann

Abstract. An algorithm to perform a higher-order sensitivity analysis for electromagnetic eigenvalue problems is presented. By computing the eigenvalue and eigenvector derivatives, the Brillouin Diagram for periodic structures can be calculated. The discrete model is described using the Finite Integration Technique (FIT) with periodic boundaries, and the sensitivity analysis is performed with respect to the phase shift φ between the periodic boundaries. For validation, a reference solution is calculated by solving multiple eigenvalue problems (EVP). Furthermore, the eigenvalue derivatives are compared to reference values using finite difference (FD) formulas.


2012 ◽  
Vol 179 (2) ◽  
pp. 169-179 ◽  
Author(s):  
Chris Kennedy ◽  
Cristian Rabiti ◽  
Hany Abdel-Khalik

Sign in / Sign up

Export Citation Format

Share Document