Simulation of Incremental Conductance MPPT based two phase interleaved boost converter using MATLAB/Simulink

Author(s):  
S. Sheik Mohammed ◽  
D. Devaraj
2017 ◽  
Vol 138 ◽  
pp. 199-204 ◽  
Author(s):  
Nandakumar Selvaraju ◽  
Prabhuraj Shanmugham ◽  
Sakda Somkun

Author(s):  
Oumnia Lagdani ◽  
Mourad Trihi ◽  
Badre Bossoufi

The purpose of this article is to extract the maximum power point at which the photovoltaic system can operate optimally. The system considered is simulated under different irradiations (between 200 W/m<sup>2</sup> and 1000 W/m<sup>2</sup>), it mainly includes the established models of solar PV and MPPT module, a DC/DC boost converter and a DC/AC converter. The most common MPPT techniques that will be studied are: "Perturbation and Observation" (P&amp;O) method, "Incremental Conductance" (INC) method, and "Fuzzy Logic" (FL) control. Simulation results obtained using MATLAB/Simulink are analyzed and compared to evaluate the performance of each of the three techniques.


Author(s):  
Mriganka Biswas ◽  
Somanath Majhi ◽  
Harshal Nemade

The paper presents a two-phase interleaved boost converter (IBC) providing higher step-up conversion ratio compared to the conventional IBC. The circuit consists of a crossly connected diode-capacitor cell which provides the extra boost up. The two identical capacitors of the cell are charged in parallel and discharged in series providing high voltage gain at considerably low duty ratio. Switching operations, ripple and average currents through inductors are analyzed in continuous conduction mode (CCM). Ripple in input current is also improved. The voltage stress across the semiconductor devices is less in the proposed converter. Also, boundary load condition is derived. Small-signal modeling is carried out and a control circuit is enabled in the voltage mode control framework. Power losses are analyzed and 96.53[Formula: see text] efficiency is achieved. Finally, the proposed converter is designed and implemented, and experimental results are provided.


Sign in / Sign up

Export Citation Format

Share Document