voltage stress
Recently Published Documents


TOTAL DOCUMENTS

950
(FIVE YEARS 288)

H-INDEX

32
(FIVE YEARS 8)

2022 ◽  
Vol 98 ◽  
pp. 107682
Author(s):  
M.S. Bhaskar ◽  
Sanjeevikumar Padmanaban ◽  
Dhafer J. Almakhles ◽  
Nikita Gupta ◽  
Umashankar Subramaniam

2022 ◽  
Vol 14 (2) ◽  
pp. 811
Author(s):  
Muhammad Yasir Ali Khan ◽  
Haoming Liu ◽  
Salman Habib ◽  
Danish Khan ◽  
Xiaoling Yuan

In this work, a non-isolated DC–DC converter is presented that combines a voltage doubler circuit and switch inductor cell with the single ended primary inductor converter to achieve a high voltage gain at a low duty cycle and with reduced component count. The converter utilizes a single switch that makes its control very simple. The voltage stress across the semiconductor components is less than the output voltage, which makes it possible to use the diodes with reduced voltage rating and a switch with low turn-on resistance. In particular, performance principle of the proposed converter along with the steady state analysis such as voltage gain, voltage stress on semiconductor components, and design of inductors and capacitors, etc., are carried out and discussed in detail. Moreover, to regulate a constant voltage at a DC-link capacitor, back propagation algorithm-based adaptive control schemes are designed. These adaptive schemes enhance the system performance by dynamically updating the control law parameters in case of PV intermittency. Furthermore, a proportional resonant controller based on Naslin polynomial method is designed for the current control loop. The method describes a systematic procedure to calculate proportional gain, resonant gain, and all the coefficients for the resonant path. Finally, the proposed system is simulated in MATLAB and Simulink software to validate the analytical and theoretical concepts along with the efficacy of the proposed model.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 540
Author(s):  
Shimi Sudha Letha ◽  
Math H. J. Bollen ◽  
Sarah K. Rönnberg

Light-emitting diode (LED) lighting has, compared to other types of lighting, a significantly lower energy consumption. However, the perceived service life is also important for customer satisfaction and here there is a discrepancy between customers’ experience and manufacturers’ statements. Many customers experience a significantly shorter service life than claimed by the manufacturers. An experiment was carried out in the Pehr Högström Laboratory at Luleå University of Technology in Skellefteå, Sweden to investigate whether voltage disturbances could explain this discrepancy. Over 1000 LED lamps were exposed to high levels of voltage disturbances for more than 6000 h; the failure rate from this experiment was similar to the one from previous experiments in which lamps were exposed to normal voltage. The discrepancy thus remains, even though some possible explanations have emerged from the project’s results. The lamps were exposed to five different types of voltage disturbances: short interruptions; transients; overvoltage; undervoltage; and harmonics. Only overvoltage resulted in failure of the lamps, and only for a single topology of lamp. A detailed analysis has been made of the topology of lamps that failed. This lamp type contains a different internal electronics circuit than the other lamp types. Failures of the lamps when exposed to overvoltage are due to the heat development in the control circuit increasing sharply when the lamps are exposed to a higher voltage. Hence, it is concluded that there are lamps that are significantly more sensitive to voltage disturbances than other lamp types. Manufactures need to consider the voltage quality that can be expected at the terminal of the lamp to prevent failure of lamps due to voltage disturbances. This paper therefore contains recommendations for manufacturers of lighting; the recommendations describe which voltage disturbances lamps should cope with.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 358
Author(s):  
Alexander Hoffmann ◽  
Bernd Ponick

This article describes a practical method for predicting the distribution of electric potential inside an electrical machine’s winding based on design data. It broadens the understanding of winding impedance in terms of inter-winding behavior and allows to properly design an electrical machine’s insulation system during the development phase. The predictions are made based on an frequency-dependent equivalent circuit of the electrical machine which is validated by measurements in the time domain and the frequency domain. Element parameters for the equivalent circuit are derived from two-dimensional field simulations. The results demonstrate a non-uniform potential distribution and demonstrate that the potential difference between individual turns and between turns and the stator core exceeds the expected values. The findings also show a link between winding impedance and potential oscillations inside the winding. Additionally, the article provides an overview of the chronological progression of turn-based models and shows how asynchronous multiprocessing is used to accelerate the solution process of the equivalent circuit.


IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Mohammad Ali Hosseinzadeh ◽  
Maryam Sarebanzadeh ◽  
Cristian Garcia ◽  
Ebrahim Babaei ◽  
Jose Rodriguez
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hongzhu Li ◽  
Ling Zhu ◽  
Le Wang

High-voltage gain converter has a high-frequency use in some industrial fields, for instance, the fuel cell system, the photovoltaic system, electric vehicles, and the high-intensity discharge lamp. In order to solve the problem of the low-voltage gain of traditional boost converter, the double-boost converter with coupled inductance and doubled voltage is proposed, which connects the traditional boost converter in parallel. The voltage gain of the converter is further improved by introducing the voltage-doubled unit of the coupled inductance. Moreover, the clamp capacitor can absorb the leakage inductance in the circuit and reduce the voltage stress of the switch. In addition, two coupled inductors are magnetically collected; then, the loss of the core is analyzed under the same gain. The detailed analysis of the proposed converter and a comparison considering other topologies previously published in the literature are also presented in this article. In order to verify the proposed converter performance, a prototype has been built for a power of 200 W, input and output voltages of 12 and 84 V, respectively, and a switching frequency of 50 kHz. Experimental results validate the effectiveness of the theoretical analysis proving the satisfactory converter performance, whose peak efficiency is 95.5%.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shanthi Thangavelu ◽  
Prabha Umapathy

A new topology for high step-up nonisolated DC-DC converter for solar PV applications is presented in this paper. The proposed high-voltage gain converter topology has many advantages like low-voltage stress on the switches, high gain with low duty ratio, and a continuous input current. The analytical waveforms of the proposed converter are presented in continuous and discontinuous modes of operation. Voltage stress analysis is conducted. The voltage gain and efficiency of the converter in presence of parasitic elements are also derived. Performance comparison of the proposed high-gain converter topology with the recently reported high-gain converter topologies is presented. Validation of theoretical analysis is done through the test results obtained from the simulation of the proposed converter. For the maximum duty ratio of 80%, the output voltage of 670 V is observed, and the voltage gain obtained is 14. Comparison of theoretical and simulation results is presented which validates the performance of the proposed converter.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3099
Author(s):  
Mohd Asif ◽  
Mohd Tariq ◽  
Adil Sarwar ◽  
Md Reyaz Hussan ◽  
Shafiq Ahmad ◽  
...  

Multilevel inverters (MLIs) are used on a large scale because they have low total harmonic distortion (THD) and low voltage stress across the switches, making them ideal for medium- and high-power applications. The authenticity of semiconductor devices is one of the main concerns for these MLIs to operate properly. Due to the large number of switches in multilevel inverters, the possibility of a fault also arises. Hence, a reliable five-level inverter topology with fault-tolerant ability has been proposed. The proposed topology can withstand an open-circuit (OC) fault caused when any single switch fails. In comparison to typical multilevel inverters, the proposed topology is fault-tolerant and reliable. The simulation of the proposed topology is conducted in MATLAB-Simulink and PLECS software packages, and the results obtained for normal pre-fault, during-fault, and after-fault conditions are discussed. Experimental results also prove the proposed cell topology’s robustness and effectiveness in tolerating OC faults across the switches. Furthermore, a thorough comparison is provided to demonstrate the proposed topology’s superiority compared to recently published topologies with fault-tolerant features.


Sign in / Sign up

Export Citation Format

Share Document