Iterative solvers for periodic matrix equations and model reduction for periodic control systems

Author(s):  
Mohammad-Sahadet Hossain ◽  
Peter Benner
Filomat ◽  
2016 ◽  
Vol 30 (9) ◽  
pp. 2503-2520 ◽  
Author(s):  
Masoud Hajarian

The periodic matrix equations are strongly related to analysis of periodic control systems for various engineering and mechanical problems. In this work, a matrix form of the conjugate gradient for least squares (MCGLS) method is constructed for obtaining the least squares solutions of the general discrete-time periodic matrix equations ?t,j=1 (Ai,jXi,jBi,j + Ci,jXi+1,jDi,j)=Mi, i=1,2,.... It is shown that the MCGLS method converges smoothly in a finite number of steps in the absence of round-off errors. Finally two numerical examples show that the MCGLS method is efficient.


1986 ◽  
Vol 108 (4) ◽  
pp. 368-371 ◽  
Author(s):  
Jium-Ming Lin ◽  
Kuang-Wei Han

In this brief note, the effects of model reduction on the stability boundaries of control systems with parameter variations, and the limit-cycle characteristics of nonlinear control systems are investigated. In order to reduce these effects, a method of model reduction is used which can approximate the original transfer function at S=0, S=∞, and also match some selected points on the frequency response curve of the original transfer function. Examples are given, and comparisons with the methods given in current literature are made.


Sign in / Sign up

Export Citation Format

Share Document