Finite element analysis of body framework for large size bus

Author(s):  
Li Zhaokai ◽  
Shen Fulin ◽  
Xiao Yuan ◽  
Xie Xuliang ◽  
Wang Gaoqing ◽  
...  
Author(s):  
Alden Yellowhorse ◽  
Larry L. Howell

Ensuring that deployable mechanisms are sufficiently rigid is a major challenge due to their large size relative to their mass. This paper examines three basic types of stiffener that can be applied to light, origami-inspired structures to manage their stiffness. These stiffeners are modeled analytically to enable prediction and optimization of their behavior. The results obtained from this analysis are compared to results from a finite-element analysis and experimental data. After verifying these models, the advantages and disadvantages of each stiffener type are considered. This comparison will facilitate stiffener selection for future engineering applications.


2013 ◽  
Vol 753-755 ◽  
pp. 1457-1461 ◽  
Author(s):  
Bao Xian Jia ◽  
Qing Cheng ◽  
Wen Feng Bian

In order to get the deployable antenna with light weight but large size and high stiffness, this study investigated SMPC self-deployable driver mechanism based on the deformation mechanism of SMPC, and designed the SMPC space deployable antenna. The laminated shell structure with two pieces of back-to-back configuration was analyzed. Finite element analysis revealed that the reasonable central angle of the laminated shell cross-section was 90°. The ends fixing structure of the SMPC hinge was given. The function and structure of the hoop truss deployable antenna were designed to meet the functional and accuracy requirements.


2002 ◽  
Vol 11 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Chatchai Kunavisarut ◽  
Lisa A. Lang ◽  
Brian R. Stoner ◽  
David A. Felton

Sign in / Sign up

Export Citation Format

Share Document