Diagonal recurrent neural network based on-line stator winding turn fault detection for induction motors

Author(s):  
Wang Xuhong ◽  
He Yigang
Author(s):  
Ahmed Thamer Radhi ◽  
Wael Hussein Zayer

The paper deals with faults diagnosis method proposed to detect the inter-turn and turn to earth short circuit in stator winding of three-phase high-speed solid rotor induction motors. This method based on negative sequence current of motor and fuzzy neural network algorithm. On the basis of analysis of 2-D electromagnet field in the solid rotor the rotor impedance has been derived to develop the solid rotor induction motor equivalent circuit. The motor equivalent circuit is simulated by MATLAB software to study and record the data for training and testing the proposed diagnosis method. The numerical results of proposed approach are evaluated using simulation of a three-phase high-speed solid-rotor induction motor of two-pole, 140 Hz. The results of simulation shows that the proposed diagnosis method is fast and efficient for detecting inter-turn and turn to earth faults in stator winding of high-speed solid-rotor induction motors with different faults conditions


2012 ◽  
Vol 3 (1) ◽  
pp. 44-55 ◽  
Author(s):  
Manjeevan Seera ◽  
Chee Peng Lim ◽  
Dahaman Ishak

In this paper, a fault detection and diagnosis system for induction motors using motor current signature analysis and the Fuzzy Min-Max (FMM) neural network is described. The finite element method is first employed to generate experimental data for predicting the changes in stator current signatures of an induction motor due to broken rotor bars. Then, a series real laboratory experiments is for broken rotor bars detection and diagnosis. The induction motor with broken rotor bars is operated under different load conditions. In all the experiments, the FMM network is used to learn and distinguish between normal and faulty states of the induction motor based on the input features extracted from the power spectral density. The experimental results positively demonstrate that the FMM network is useful for fault detection and diagnosis of broken rotor bars in induction motors.


Author(s):  
Hyeon Bae ◽  
◽  
Youn-Tae Kim ◽  
Sungshin Kim ◽  
Sang-Hyuk Lee ◽  
...  

The motor is the workhorse of industries. The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. This paper introduces fault detection for induction motors. Stator currents are measured by current meters and stored by time domain. The time domain is not suitable for representing current signals, so the frequency domain is applied to display signals. The Fourier Transform is employed to convert signals. After signal conversion, signal features must be extracted by signal processing such as wavelet and spectrum analysis. Features are entered in a pattern classification model such as a neural network model, a polynomial neural network, or a fuzzy inference model. This paper describes fault detection results that use Fourier and wavelet analysis. This combined approach is very useful and powerful for detecting signal features.


Sign in / Sign up

Export Citation Format

Share Document