scholarly journals A novel method to avoid degradation due to demagnetization of PM linear generators for oceanic wave energy extraction

Author(s):  
Omar Farrok ◽  
Md. Rabiul Islam ◽  
Md. Rafiqul Islam Sheikh ◽  
Youguang Guo ◽  
Jianguo Zhu ◽  
...  
Author(s):  
Christophe Cochet ◽  
Ronald W. Yeung

The wave-energy absorber being developed at UC Berkeley is modeled as a moored compound cylinder, with an outer cylinder sliding along a tension-tethered inner cylinder. With rigid-body dynamics, it is first shown that the surge and pitch degrees of freedom are decoupled from the heave motion. The heaving motion of the outer cylinder is analyzed and its geometric proportions (radii and drafts ratios) are optimized for wave-energy extraction. Earlier works of Yeung [1] and Chau and Yeung [2,3] are used in the present heave-motion study. The coupled surge-pitch motion can be solved and can provide the contact forces between the cylinders. The concept of capture width is used to characterize the energy extraction: its maximization leads to optimal energy extraction. The methodology presented provides the optimal geometry in terms of non-dimensional proportions of the device. It is found that a smaller radius and deeper draft for the outer cylinder will lead to a larger capture width and larger resulting motion.


Author(s):  
Zhengzhi Deng ◽  
Zhenhua Huang ◽  
Adrian W. K. Law

An analytical theory is developed for an oscillating water column (OWC) with a V-shaped channel to improve the pneumatic efficiency of wave energy extraction. An eigenfunction expansion method is used in a cylindrical coordinate system to investigate wave interaction with the OWC converter system. Auxiliary functions are introduced to capture the singular behaviours in the velocity field near the salient corners and cusped edges. Effects of the OWC dimensions, the opening angle and length of the V-shaped channel, as well as the incident wave direction, on the pneumatic efficiency of wave energy extraction are examined. Compared with a system without the V-shaped channel, our results show that the V-shaped channel can significantly increase the conversion efficiency and widen the range of wave frequency over which the OWC system can operate at a high efficiency. For typical coastal water depths, the OWC converter system can perform efficiently when the diameter of the OWC chamber is in the range of 1 5 – 1 2 times the water depth, the opening angle of the V-shaped channel is in the range of [ π /2, 3 π /4] and the length of the V-shaped channel is in the range of 1–1.5 times the water depth.


Sign in / Sign up

Export Citation Format

Share Document