Radiation Source Reconstruction based on Artificial Neural Network for Radio Frequency Interference (RFI) Analysis in Complex System

Author(s):  
Yu-Fei Shu ◽  
Xing-Chang Wei
Author(s):  
CKM Lee ◽  
Ng Wenwei Benjamin ◽  
Shaligram Pokharel

Demand uncertainty leads to fluctuations in inventory position at each echelon of a supply chain causing bullwhip effect, which can lead to significant cost and loss of efficiency and waste of resources. One of the aspects that can reduce potential bullwhip effect is the sharing of real time information for which the recently mass produced Radio Frequency Identification (RFID) can be of great value. The use of RFID technology can also help in increasing the visibility of the flow of goods and material, keeping track of the location and quantity at each distribution centre and warehouses. This will also help in the periodic and near real time optimization of inventory level of goods and material. The data collected with RFID can be analysed in artificial Neural Network (NN) to forecast the future demand. In this chapter, a framework is proposed by combining RFID with artificial neural network so that lean logistics can be realized in the supply chain.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3485 ◽  
Author(s):  
Amir Abbas Soltani ◽  
Ayman El-Hag

One of the most promising techniques for condition monitoring of high voltage equipment insulation is partial discharge (PD) measurement using radio frequency (RF) antenna. Nevertheless, the accuracy of monitoring, classification, localization, or lifetime estimation could be negatively affected due to the interferences and noises measured simultaneously and contaminate the RF signals. Therefore, to achieve high accuracy of PD assessment, exploiting the denoising algorithms is inevitable. Hence, this paper seeks to introduce a new technique to suppress white noise, the most prevalent type of noise, especially for RF signals. In the proposed method, the ability of artificial neural network (ANN) in curve fitting is applied to denoising of different types of measured RF signals emitted from PD sources including ‘crack’, ‘internal void’, in the insulator discs and ‘sharp points’ from external hardware. The processes of denoising for named signals with the proposed method are carried out, and the obtained results are compared with the outputs of a wavelet transform-based method named energy conversation-based thresholding. In all tested signals, the proposed technique showed superior denoising capability.


Sign in / Sign up

Export Citation Format

Share Document