Short Term Load Forecasting Using Neural Network Trained with Genetic Algorithm & Particle Swarm Optimization

Author(s):  
Sanjib Mishra ◽  
Sarat Kumar Patra
Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2873 ◽  
Author(s):  
Dinh Thanh Viet ◽  
Vo Van Phuong ◽  
Minh Quan Duong ◽  
Quoc Tuan Tran

As sources of conventional energy are alarmingly being depleted, leveraging renewable energy sources, especially wind power, has been increasingly important in the electricity market to meet growing global demands for energy. However, the uncertainty in weather factors can cause large errors in wind power forecasts, raising the cost of power reservation in the power system and significantly impacting ancillary services in the electricity market. In pursuance of a higher accuracy level in wind power forecasting, this paper proposes a double-optimization approach to developing a tool for forecasting wind power generation output in the short term, using two novel models that combine an artificial neural network with the particle swarm optimization algorithm and genetic algorithm. In these models, a first particle swarm optimization algorithm is used to adjust the neural network parameters to improve accuracy. Next, the genetic algorithm or another particle swarm optimization is applied to adjust the parameters of the first particle swarm optimization algorithm to enhance the accuracy of the forecasting results. The models were tested with actual data collected from the Tuy Phong wind power plant in Binh Thuan Province, Vietnam. The testing showed improved accuracy and that this model can be widely implemented at other wind farms.


2012 ◽  
Vol 591-593 ◽  
pp. 1311-1314
Author(s):  
Xing Tong Zhu ◽  
Bo Xu

The values of parameters of support vector machine have close contact with its forecast accuracy. In order to accurately forecast power short-term load,we presented a power short-term load forecasting method based on quantum-behaved particle swarm optimization and support vector machine.First,cauchy distribution was used to improve the quantum particle swarm algorithm.Secondly,the improved quantum particle swarm optimization algorithm was used to optimize the parameter of support vector machine.Finally, the support vector machine was used for power short-term load forecasting. In the proposed method such factors impacting loads as meteorology,weather and date types are comprehensively considered. The experimental results show that the root-mean-square relative error of the proposed method is only 1.90%, which is less than those of SVM and PSO-SVM model by 2.29% and 2.80%, respectively.


Sign in / Sign up

Export Citation Format

Share Document