Muscle activation profiles based on the proportionality hypothesis of the Kinematic Theory of Human Movements

Author(s):  
Ben Braithwaite ◽  
Rejean Plamondon ◽  
Mickael Begon
1995 ◽  
Vol 73 (1) ◽  
pp. 95-95 ◽  
Author(s):  
Réjean Plamondon

1997 ◽  
Vol 20 (2) ◽  
pp. 279-303 ◽  
Author(s):  
Réjean Plamondon ◽  
Adel M. Alimi

This target article presents a critical survey of the scientific literature dealing with the speed/accuracy trade-offs in rapid-aimed movements. It highlights the numerous mathematical and theoretical interpretations that have been proposed in recent decades. Although the variety of points of view reflects the richness of the field and the high degree of interest that such basic phenomena attract in the understanding of human movements, it calls into question the ability of many models to explain the basic observations consistently reported in the field. This target article summarizes the kinematic theory of rapid human movements, proposed recently by R. Plamondon (1993b; 1993c; 1995a; 1995b), and analyzes its predictions in the context of speed/accuracy trade-offs. Data from human movement literature are reanalyzed and reinterpreted in the context of the new theory. It is shown that the various aspects of speed/ accuracy trade-offs can be taken into account by considering the asymptotic behavior of a large number of coupled linear systems, from which a delta-lognormal law can be derived to describe the velocity profile of an end-effector driven by a neuromuscular synergy. This law not only describes velocity profiles almost perfectly, it also predicts the kinematic properties of simple rapid movements and provides a consistent framework for the analysis of different types of speed/accuracy trade-offs using a quadratic (or power) law that emerges from the model.


1995 ◽  
Vol 72 (4) ◽  
pp. 295-307 ◽  
Author(s):  
R�jean Plamondon

Author(s):  
C. Carmona-Duarte ◽  
M. A. Ferrer ◽  
R. Plamondon ◽  
A. Gómez-Rodellar ◽  
P. Gómez-Vilda

AbstractHuman movement studies and analyses have been fundamental in many scientific domains, ranging from neuroscience to education, pattern recognition to robotics, health care to sports, and beyond. Previous speech motor models were proposed to understand how speech movement is produced and how the resulting speech varies when some parameters are changed. However, the inverse approach, in which the muscular response parameters and the subject’s age are derived from real continuous speech, is not possible with such models. Instead, in the handwriting field, the kinematic theory of rapid human movements and its associated Sigma-lognormal model have been applied successfully to obtain the muscular response parameters. This work presents a speech kinematics-based model that can be used to study, analyze, and reconstruct complex speech kinematics in a simplified manner. A method based on the kinematic theory of rapid human movements and its associated Sigma-lognormal model are applied to describe and to parameterize the asymptotic impulse response of the neuromuscular networks involved in speech as a response to a neuromotor command. The method used to carry out transformations from formants to a movement observation is also presented. Experiments carried out with the (English) VTR-TIMIT database and the (German) Saarbrucken Voice Database, including people of different ages, with and without laryngeal pathologies, corroborate the link between the extracted parameters and aging, on the one hand, and the proportion between the first and second formants required in applying the kinematic theory of rapid human movements, on the other. The results should drive innovative developments in the modeling and understanding of speech kinematics.


Author(s):  
MOUSSA DJIOUA ◽  
RÉJEAN PLAMONDON ◽  
ANTONIO DELLA CIOPPA ◽  
ANGELO MARCELLI

A theory, called the Kinematic Theory of Rapid Human Movement, was proposed a few years ago to analyze rapid human movements, called the Kinematic Theory of Rapid Human Movements, based on a delta-lognormal equation that globally describes the basic properties of the velocity profiles of an end-effector using seven parameters. This realistic model has been very useful for proposing original solutions to various pattern recognition problems (signature segmentation and verification, handwriting analysis and synthesis, etc.). Most of these applications rely on the use of an efficient algorithm to extract the delta-lognormal parameters from real data with the best possible fit. In this paper, we compare two such algorithms: a deterministic one, based on nonlinear regression, and a Breeder Genetic algorithm. The performance of these two algorithms and of their combinations are compared using the same artificial database, composed of analytical delta-lognormal profiles and their noisy versions (20 dB SNR). In the free-noise case, the analysis of the experimental results shows that the deterministic approach leads to better results than the evolutionary one, while under the extremely noisy conditions selected, the evolutionary approach seems to be less sensitive to noise, but is nevertheless less successful than the deterministic search.


Sign in / Sign up

Export Citation Format

Share Document