HDGSOM: A Modified Growing Self-Organizing Map for High Dimensional Data Clustering

Author(s):  
R. Amarasiri ◽  
D. Alahakoon ◽  
K.A. Smith
2014 ◽  
Vol 41 (3) ◽  
pp. 341-355 ◽  
Author(s):  
Yi Xiao ◽  
Rui-Bin Feng ◽  
Zi-Fa Han ◽  
Chi-Sing Leung

Algorithms ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 109 ◽  
Author(s):  
Marian B. Gorzałczany ◽  
Filip Rudziński

In this paper, we briefly present several modifications and generalizations of the concept of self-organizing neural networks—usually referred to as self-organizing maps (SOMs)—to illustrate their advantages in applications that range from high-dimensional data visualization to complex data clustering. Starting from conventional SOMs, Growing SOMs (GSOMs), Growing Grid Networks (GGNs), Incremental Grid Growing (IGG) approach, Growing Neural Gas (GNG) method as well as our two original solutions, i.e., Generalized SOMs with 1-Dimensional Neighborhood (GeSOMs with 1DN also referred to as Dynamic SOMs (DSOMs)) and Generalized SOMs with Tree-Like Structures (GeSOMs with T-LSs) are discussed. They are characterized in terms of (i) the modification mechanisms used, (ii) the range of network modifications introduced, (iii) the structure regularity, and (iv) the data-visualization/data-clustering effectiveness. The performance of particular solutions is illustrated and compared by means of selected data sets. We also show that the proposed original solutions, i.e., GeSOMs with 1DN (DSOMs) and GeSOMS with T-LSs outperform alternative approaches in various complex clustering tasks by providing up to 20 % increase in the clustering accuracy. The contribution of this work is threefold. First, algorithm-oriented original computer-implementations of particular SOM’s generalizations are developed. Second, their detailed simulation results are presented and discussed. Third, the advantages of our earlier-mentioned original solutions are demonstrated.


2003 ◽  
Vol 13 (05) ◽  
pp. 353-365 ◽  
Author(s):  
ZHENG WU ◽  
GARY G. YEN

The Self-Organizing Map (SOM) is an efficient tool for visualizing high-dimensional data. In this paper, an intuitive and effective SOM projection method is proposed for mapping high-dimensional data onto the two-dimensional grid structure with a growing self-organizing mechanism. In the learning phase, a growing SOM is trained and the growing cell structure is used as the baseline framework. In the ordination phase, the new projection method is used to map the input vector so that the input data is mapped to the structure of the SOM without having to plot the weight values, resulting in easy visualization of the data. The projection method is demonstrated on four different data sets, including a 118 patent data set and a 399 checical abstract data set related to polymer cements, with promising results and a significantly reduced network size.


Author(s):  
Momotaz Begum ◽  
Bimal Chandra Das ◽  
Md. Zakir Hossain ◽  
Antu Saha ◽  
Khaleda Akther Papry

<p>Manipulating high-dimensional data is a major research challenge in the field of computer science in recent years. To classify this data, a lot of clustering algorithms have already been proposed. Kohonen self-organizing map (KSOM) is one of them. However, this algorithm has some drawbacks like overlapping clusters and non-linear separability problems. Therefore, in this paper, we propose an improved KSOM (I-KSOM) to reduce the problems that measures distances among objects using EISEN Cosine correlation formula. So far as we know, no previous work has used EISEN Cosine correlation distance measurements to classify high-dimensional data sets. To the robustness of the proposed KSOM, we carry out the experiments on several popular datasets like Iris, Seeds, Glass, Vertebral column, and Wisconsin breast cancer data sets. Our proposed algorithm shows better result compared to the existing original KSOM and another modified KSOM in terms of predictive performance with topographic and quantization error.</p>


2020 ◽  
Vol 92 (15) ◽  
pp. 10450-10459 ◽  
Author(s):  
Wil Gardner ◽  
Ruqaya Maliki ◽  
Suzanne M. Cutts ◽  
Benjamin W. Muir ◽  
Davide Ballabio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document