A time-domain harmonic power-flow analysis in electrical energy distribution networks, using Norton models for non-linear loading

Author(s):  
C. A. Canesin ◽  
L. C. O. de Oliveira ◽  
J. B. Souza ◽  
D. de O. de Lima ◽  
R. P. Buratti
2019 ◽  
Vol 40 ◽  
pp. 69
Author(s):  
Bruno Pereira do Nascimento ◽  
Caison Rodrigues Ramos ◽  
Aline Brum Loreto

The basic function of the Electric Power System is to supply electrical energy with quality and when requested. For this to be possible some analysis of the system is required, among them Power Flow Analysis. This analysis is important for the delineation of the power systems, as well as in the definition of the best conditions of operation, control and supervision of the existing systems. The system is modeled as follows: Generators, Loads, Reactors and Capacitors are connected between any node and the ground node, since the transmission lines and transformers are connected between any two nodes. Thus, the admittance matrix of the system will be generated through nodal analysis that will be solved by numerical methods. One of the objectives of this work aims to perform the power flow analysis of a system with the aid of numerical methods. Another objective is as well as to verify the accuracy of the results, with solutions obtained by the methods of Gauss Elimination, LU Factoration, Gauss Seidel and Crout Method, implemented in C language. The analysis of the accuracy of the results occurred through the relative error in comparison to the results obtained by MatLab software.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2663
Author(s):  
Raavi Satish ◽  
Kanchapogu Vaisakh ◽  
Almoataz Y. Abdelaziz ◽  
Adel El-Shahat

Due to the rapid advancement in power electronic devices in recent years, there is a fast growth of non-linear loads in distribution networks (DNs). These non-linear loads can cause harmonic pollution in the networks. The harmonic pollution is low, and the resonance problem is absent in distribution static synchronous compensators (D-STATCOM), which is the not case in traditional compensating devices such as capacitors. The power quality issue can be enhanced in DNs with the interfacing of D-STATCOM devices. A novel three-phase harmonic power flow algorithm (HPFA) for unbalanced radial distribution networks (URDN) with the existence of linear and non-linear loads and the integration of a D-STATCOM device is presented in this paper. The bus number matrix (BNM) and branch number matrix (BRNM) are developed in this paper by exploiting the radial topology in DNs. These matrices make the development of HPFA simple. Without D-STATCOM integration, the accuracy of the fundamental power flow solution and harmonic power flow solution are tested on IEEE−13 bus URDN, and the results are found to be precise with the existing work. Test studies are conducted on the IEEE−13 bus and the IEEE−34 bus URDN with interfacing D-STATCOM devices, and the results show that the fundamental r.m.s voltage profile is improved and the fundamental harmonic power loss and total harmonic distortion (THD) are reduced.


Sign in / Sign up

Export Citation Format

Share Document