PD pattern recognition using S transform and two-directional two-dimensional principal component analysis

Author(s):  
Gaolin Wu ◽  
Ruilin Xu ◽  
Ke Wang ◽  
Qian Wang ◽  
Yan Yang ◽  
...  
2017 ◽  
Vol 40 (7) ◽  
pp. 2387-2395 ◽  
Author(s):  
Yi Ji ◽  
Hong-Bo Xie

Time-frequency representiation has been intensively employed for the analysis of biomedical signals. In order to extract discriminative information, time-frequency matrix is often transformed into a 1D vector followed by principal component analysis (PCA). This study contributes a two-directional two-dimensional principal component analysis (2D2PCA)-based technique for time-frequency feature extraction. The S transform, integrating the strengths of short time Fourier transform and wavelet transform, is applied to perform the time-frequency decomposition. Then, 2D2PCA is directly conducted on the time-frequency matrix rather than 1D vectors for feature extraction. The proposed method can significantly reduce the computational cost while capture the directions of maximal time-frequency matrix variance. The efficiency and effectiveness of the proposed method is demonstrated by classifying eight hand motions using 4-channel myoelectric signals recorded in health subjects and amputees.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Tai-Xiang Jiang ◽  
Ting-Zhu Huang ◽  
Xi-Le Zhao ◽  
Tian-Hui Ma

We have proposed a patch-based principal component analysis (PCA) method to deal with face recognition. Many PCA-based methods for face recognition utilize the correlation between pixels, columns, or rows. But the local spatial information is not utilized or not fully utilized in these methods. We believe that patches are more meaningful basic units for face recognition than pixels, columns, or rows, since faces are discerned by patches containing eyes and noses. To calculate the correlation between patches, face images are divided into patches and then these patches are converted to column vectors which would be combined into a new “image matrix.” By replacing the images with the new “image matrix” in the two-dimensional PCA framework, we directly calculate the correlation of the divided patches by computing the total scatter. By optimizing the total scatter of the projected samples, we obtain the projection matrix for feature extraction. Finally, we use the nearest neighbor classifier. Extensive experiments on the ORL and FERET face database are reported to illustrate the performance of the patch-based PCA. Our method promotes the accuracy compared to one-dimensional PCA, two-dimensional PCA, and two-directional two-dimensional PCA.


Sign in / Sign up

Export Citation Format

Share Document