Performance assessment of control loops with non-Gaussian disturbance Based on Generalized Minimum Entropy

Author(s):  
Yu Jia ◽  
Jinglin Zhou ◽  
Dazi Li
Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 379 ◽  
Author(s):  
Qian Zhang ◽  
Ya-Gang Wang ◽  
Fei-Fei Lee ◽  
Wei Zhang ◽  
Qiu Chen

Due to the fact that cascade control can improve the single-loop’s performance well and reduce the integral error from disturbance response, it has been one of the most important control strategies in industrial production, especially in thermal power plant and chemical engineering. However, most of the existing research is based on the Gaussian system and other few studies on the non-Gaussian cascade disturbance system also have obvious defects. In this paper, an effective control loop performance assessment (CPA) of cascade control system for many non-Gaussian distributions even the unknown mixture disturbance noise has been proposed. Compared to the minimum variance control (MVC) approach, the minimum entropy control (MEC) method can obtain a more accurate estimate. In this method, like MVC, the primary loop output and secondary loop output can be represented as invariant and dependent terms, then adopted estimated distribution algorithm (EDA) is used to achieve the system model and disturbances. In order to show the effectiveness of MEC, some simulation examples based on different perturbations are given.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1069
Author(s):  
Jinfang Zhang ◽  
Di Wu

The performance assessment of any control system plays a key role in industrial control systems. To meet the real-time requirements of modern control systems, a quick and accurate evaluation of the performance of a system is necessary. In this paper, a performance assessment method of a non-Gaussian control system based on mixture correntropy is proposed for non-Gaussian stochastic systems. Mixture correntropy can solve the problem of minimum entropy translation invariance. When the expected output of a system is unavailable, mixture correntropy combined with the estimation of distribution algorithm (EDA) is used for system identification and noise distribution estimation so as to calculate the benchmark of entropy-based performance assessment. When the expected output of a system is available, the mixture correntropy is directly used as the index to evaluate the performance of the system. To improve the real-time aspect of the performance assessment, an improved EDA is presented to obtain the evaluation index more quickly. For both Gaussian and non-Gaussian systems, the mixture correntropy and the improved identification algorithm are used for system performance assessment, and the results are compared with the minimum entropy index and the probability density function (PDF) curve coincident area index. The comparisons verify the rationality and effectiveness of the correntropy index and the rapidity of the improved EDA algorithm.


Sign in / Sign up

Export Citation Format

Share Document