UAV-Aided Secure Communication With Deployment Optimization and Cooperative Jamming

Author(s):  
Hongbing Li ◽  
Juan Wu ◽  
Lei Luo ◽  
Jiang Xiong
Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 945
Author(s):  
Karim Banawan ◽  
Sennur Ulukus

We investigate the secure degrees of freedom (s.d.o.f.) of three new channel models: broadcast channel with combating helpers, interference channel with selfish users, and multiple access wiretap channel with deviating users. The goal of introducing these channel models is to investigate various malicious interactions that arise in networks, including active adversaries. That is in contrast with the common assumption in the literature that the users follow a certain protocol altruistically and transmit both message-carrying and cooperative jamming signals in an optimum manner. In the first model, over a classical broadcast channel with confidential messages (BCCM), there are two helpers, each associated with one of the receivers. In the second model, over a classical interference channel with confidential messages (ICCM), there is a helper and users are selfish. By casting each problem as an extensive-form game and applying recursive real interference alignment, we show that, for the first model, the combating intentions of the helpers are neutralized and the full s.d.o.f. is retained; for the second model, selfishness precludes secure communication and no s.d.o.f. is achieved. In the third model, we consider the multiple access wiretap channel (MAC-WTC), where multiple legitimate users wish to have secure communication with a legitimate receiver in the presence of an eavesdropper. We consider the case when a subset of users deviate from the optimum protocol that attains the exact s.d.o.f. of this channel. We consider two kinds of deviation: when some of the users stop transmitting cooperative jamming signals, and when a user starts sending intentional jamming signals. For the first scenario, we investigate possible responses of the remaining users to counteract such deviation. For the second scenario, we use an extensive-form game formulation for the interactions of the deviating and well-behaving users. We prove that a deviating user can drive the s.d.o.f. to zero; however, the remaining users can exploit its intentional jamming signals as cooperative jamming signals against the eavesdropper and achieve an optimum s.d.o.f.


2018 ◽  
Vol 25 (7) ◽  
pp. 4077-4095 ◽  
Author(s):  
Yuanyu Zhang ◽  
Yulong Shen ◽  
Xiaohong Jiang

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
An Li ◽  
Nong Qu

We propose a jam-then-harvest protocol for dual-hop cooperative networks with an untrusted relay, where an external friendly jammer helps keep information secret from the untrusted relay by transmitting a priori jamming signal for the destination. In particular, the wireless powered jammer scavenges energy from the received forwarded signal and recovers its initial energy to perform jamming in next time slot. We analytically derive an exact expression of the probability of nonzero secrecy rate (PNSR) for the proposed jam-then-harvest protocol. For performance comparison, cooperative jamming with the constant power supply is provided as a lower bound benchmark. Our results show that the proposed protocol not only can achieve the secure communication but also can harvest the enough energy without a loss of performance in the low jamming power region.


2017 ◽  
Vol 21 (9) ◽  
pp. 2025-2028 ◽  
Author(s):  
Kuo Cao ◽  
Yueming Cai ◽  
Yongpeng Wu ◽  
Weiwei Yang

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Toni Draganov Stojanovski ◽  
Ninoslav Marina

Information-theoretic secrecy is combined with cryptographic secrecy to create a secret-key exchange protocol for wireless networks. A network of transmitters, which already have cryptographically secured channels between them, cooperate to exchange a secret key with a new receiver at a random location, in the presence of passive eavesdroppers at unknown locations. Two spatial point processes, homogeneous Poisson process and independent uniformly distributed points, are used for the spatial distributions of transmitters and eavesdroppers. We analyse the impact of the number of cooperating transmitters and the number of eavesdroppers on the area fraction where secure communication is possible. Upper bounds on the probability of existence of positive secrecy between the cooperating transmitters and the receiver are derived. The closeness of the upper bounds to the real value is then estimated by means of numerical simulations. Simulations also indicate that a deterministic spatial distribution for the transmitters, for example, hexagonal and square lattices, increases the probability of existence of positive secrecy capacity compared to the random spatial distributions. For the same number of friendly nodes, cooperative transmitting provides a dramatically larger secrecy region than cooperative jamming and cooperative relaying.


Sign in / Sign up

Export Citation Format

Share Document