Union simulation on lower limbs rehabilitation robot based on MATLAB and ADAMS

Author(s):  
Chao Liao ◽  
Jianbin Zhang ◽  
Weihai Chen ◽  
Mingxing Lv
Author(s):  
Erhan Akdogan ◽  
M. Arif Adli ◽  
Ertugrul Taçgin ◽  
Nureddin Bennett

The demand for rehabilitation increases daily as a result of diseases, occupational and traffic accidents and population growth. In the present time, some important problems occur regarding the rehabilitation period: the transportation of patients, the acquisition and storage of treatment data and the need to support the physiotherapists with intelligent devices. In order to overcome these challenges, the authors hereby propose a human machine interface to control an intelligent rehabilitation robot system designed for the lower limbs. The human machine interface has a structure that is created with a rule-based intelligent controlling structure, combined with conventional controller and an easy-to-use graphical user interface. By means of this interface, the rehabilitation sessions can be stored and members of the rehabilitation team can reach to this stored data via internet. Additionally, the patient can receive treatment in his house. One physiotherapist is able to treat several patients at a time by utilizing this system. The system’s capacity has been elaborated through the test results.


2014 ◽  
Vol 602-605 ◽  
pp. 848-852
Author(s):  
Wen Long Wang ◽  
Ji Rong Wang

This paper describes the design of the gait mechanism of pedal lower limb rehabilitation robot based on people’s heel movement trajectory curve in the normal walking. It is established the kinematics mathematical model of a pedal lower limbs rehabilitation robot and the simplified three-dimensional model with Pro/e software, then it is simulated kinematics using ADAMS software. The simulation result is shown that this pedal lower limbs rehabilitation robot can achieve the expected rehabilitation exercise and run smoothly. Kinematics analysis and simulation of pedal rehabilitation robot is provided the necessary theoretical basis and parameters for the study of lower limb rehabilitation machinery.


Sign in / Sign up

Export Citation Format

Share Document