scholarly journals Control and VR Navigation of a Gait Rehabilitation Robot with Upper and Lower Limbs Connections

2009 ◽  
Vol 15 (3) ◽  
pp. 315-322 ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Kazuya Kubo ◽  
Takanori Miyoshi ◽  
Akira Kanai ◽  
Kazuhiko Terashima

Central nervous system diseases cause the gait disorder. Early rehabilitation of a patient with central nervous system disease is shown to be benefit. However, early gait training is difficult because of muscular weakness and those elderly patients who lose of leg muscular power. In the patient's walking training, therapists assist the movement of patient's lower limbs and control the movement of patient's lower limbs. However the assistance for the movement of the lower limbs is a serious hard labor for therapists. Therefore, research into and development of various gait rehabilitation devices is currently underway to identify methods to alleviate the physical burden on therapists. In this paper, we introduced the about gait rehabilitation devices in central nervous system disease.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2452
Author(s):  
Ana Cecilia Villa-Parra ◽  
Jessica Lima ◽  
Denis Delisle-Rodriguez ◽  
Laura Vargas-Valencia ◽  
Anselmo Frizera-Neto ◽  
...  

The goal of this study is the assessment of an assistive control approach applied to an active knee orthosis plus a walker for gait rehabilitation. The study evaluates post-stroke patients and healthy subjects (control group) in terms of kinematics, kinetics, and muscle activity. Muscle and gait information of interest were acquired from their lower limbs and trunk, and a comparison was conducted between patients and control group. Signals from plantar pressure, gait phase, and knee angle and torque were acquired during gait, which allowed us to verify that the stance control strategy proposed here was efficient at improving the patients’ gaits (comparing their results to the control group), without the necessity of imposing a fixed knee trajectory. An innovative evaluation of trunk muscles related to the maintenance of dynamic postural equilibrium during gait assisted by our active knee orthosis plus walker was also conducted through inertial sensors. An increase in gait cycle (stance phase) was also observed when comparing the results of this study to our previous work. Regarding the kinematics, the maximum knee torque was lower for patients when compared to the control group, which implies that our orthosis did not demand from the patients a knee torque greater than that for healthy subjects. Through surface electromyography (sEMG) analysis, a significant reduction in trunk muscle activation and fatigability, before and during the use of our orthosis by patients, was also observed. This suggest that our orthosis, together with the assistive control approach proposed here, is promising and could be considered to complement post-stroke patient gait rehabilitation.


2014 ◽  
Vol 494-495 ◽  
pp. 1084-1087
Author(s):  
Fu Cheng Cao ◽  
Hai Xin Sun ◽  
Li Rong Wang

An iterative learning impedance control algorithm is presented to control a gait rehabilitation robot. According to the circumstances of the patient, the appropriate rehabilitation target impedance parameters are set. With the adoption of iterative learning control law, the impedance error in the closed loop is guaranteed to converge to zero and the iterative trajectories follow the desired trajectories over the entire operation interval. The effectiveness of the proposed method is shown through numerical simulation results.


Sign in / Sign up

Export Citation Format

Share Document