Two-sided with multi-parallel stations assembly line balancing based on heuristic algorithm

Author(s):  
Fu-peng Yin ◽  
Jia-kun Sun ◽  
Ai-hua Wu
2021 ◽  
pp. 1063293X2110655
Author(s):  
Yuling Jiao ◽  
Xue Deng ◽  
Mingjuan Li ◽  
Xiaocui Xing ◽  
Binjie Xu

Aiming at improving assembly line efficiency and flexibility, a balancing method of parallel U-shaped assembly line system is proposed. Based on the improved product priority diagram, the bidirectional priority value formula is obtained. Then, assembly lines are partitioned into z-q partitions and workstations are defined. After that, the mathematical model of the parallel U-shaped assembly line balancing problem is established. A heuristic algorithm based on bidirectional priority values is used to solve explanatory examples and test examples. It can be seen from the results and the effect indicators of the assembly line balancing problem that the heuristic algorithm is suitable for large balancing problems. The proposed method has higher calculation accuracy and shorter calculation time. The balancing effect of the parallel U-shaped assembly line is better than that of single U-shaped assembly line, which verifies the superiority of the parallel U-type assembly line and effectiveness of the proposed method. It provides a theoretical and practical reference for parallel U-type assembly line balancing problem.


2021 ◽  
Vol 39 (3A) ◽  
pp. 477-487
Author(s):  
Samah. A. Aufy ◽  
AllaEldin. H. Kassam

The paper aims to address the straight and U–type assembly line balancing problems by developing a novel recursive heuristic algorithm based on the idea of the depth of search. The dynamic fuzzy processing time (DFPT) model is employed to represent uncertainty and ambiguity related to the processing time in the actual production systems. The novel algorithm, the minimum cycle time objective is considered for a set of imposed considerers. They are arranged in an appropriate strategy in which three-stages are proposed and presented as a solution approach. Finally, the validity of the developed solution approach is evaluated through a tested numerical example conducted over a test problem taken from literature to assess its performance. This study proofs their ability and efficiency in assisting decision-making by determining the contribution proportion for significant assignment variables represented by skill level, work stability, type layout, and priority rule.


Sign in / Sign up

Export Citation Format

Share Document