scholarly journals A Novel Recursive Heuristic Algorithm for Straight and U-Shaped Assembly Line Balancing with Fuzzy Processing Time

2021 ◽  
Vol 39 (3A) ◽  
pp. 477-487
Author(s):  
Samah. A. Aufy ◽  
AllaEldin. H. Kassam

The paper aims to address the straight and U–type assembly line balancing problems by developing a novel recursive heuristic algorithm based on the idea of the depth of search. The dynamic fuzzy processing time (DFPT) model is employed to represent uncertainty and ambiguity related to the processing time in the actual production systems. The novel algorithm, the minimum cycle time objective is considered for a set of imposed considerers. They are arranged in an appropriate strategy in which three-stages are proposed and presented as a solution approach. Finally, the validity of the developed solution approach is evaluated through a tested numerical example conducted over a test problem taken from literature to assess its performance. This study proofs their ability and efficiency in assisting decision-making by determining the contribution proportion for significant assignment variables represented by skill level, work stability, type layout, and priority rule.

2020 ◽  
Vol 10 (11) ◽  
pp. 3932
Author(s):  
László Nagy ◽  
Tamás Ruppert ◽  
János Abonyi

Assembly line balancing improves the efficiency of production systems by the optimal assignment of tasks to operators. The optimisation of this assignment requires models that provide information about the activity times, constraints and costs of the assignments. A multilayer network-based representation of the assembly line-balancing problem is proposed, in which the layers of the network represent the skills of the operators, the tools required for their activities and the precedence constraints of their activities. The activity–operator network layer is designed by a multi-objective optimisation algorithm in which the training and equipment costs as well as the precedence of the activities are also taken into account. As these costs are difficult to evaluate, the analytic hierarchy process (AHP) technique is used to quantify the importance of the criteria. The optimisation problem is solved by a multi-level simulated annealing algorithm (SA) that efficiently handles the precedence constraints. The efficiency of the method is demonstrated by a case study from wire harness manufacturing.


2013 ◽  
Vol 824 ◽  
pp. 568-578 ◽  
Author(s):  
Ralph O. Edokpia ◽  
F.U. Owu

Assembly line balancing is an attractive means of mass manufacturing and large-scale serial production systems. Traditionally, assembly lines are arranged in straight single-model lines and the problem is known as Simple Assembly Line balancing problem (SALBP). In this study, two heuristic assembly line balancing techniques known as the Ranked Positional Weight Technique, and the longest operational time technique, were applied to solve the problem of single-model line balancing problem in an assembling company with the aim of comparing the efficiencies of the application of the two algorithms. By using both methods, different restrictions were taken into consideration and two different lines balancing results were obtained. From the results obtained, Longest Operating Time Technique has higher line efficiency (85.16%) as compared to Ranked positional weight technique (79.28%) and it is easy to apply. The LOT technique gave the minimum number of workstations (27) as compared to the RPW technique (29); however the line efficiency and the number of workstation of the existing line are 74.67% and 31 respectively. This implies that the LOT technique has a better reduction in operating cost.


2021 ◽  
pp. 1063293X2110655
Author(s):  
Yuling Jiao ◽  
Xue Deng ◽  
Mingjuan Li ◽  
Xiaocui Xing ◽  
Binjie Xu

Aiming at improving assembly line efficiency and flexibility, a balancing method of parallel U-shaped assembly line system is proposed. Based on the improved product priority diagram, the bidirectional priority value formula is obtained. Then, assembly lines are partitioned into z-q partitions and workstations are defined. After that, the mathematical model of the parallel U-shaped assembly line balancing problem is established. A heuristic algorithm based on bidirectional priority values is used to solve explanatory examples and test examples. It can be seen from the results and the effect indicators of the assembly line balancing problem that the heuristic algorithm is suitable for large balancing problems. The proposed method has higher calculation accuracy and shorter calculation time. The balancing effect of the parallel U-shaped assembly line is better than that of single U-shaped assembly line, which verifies the superiority of the parallel U-type assembly line and effectiveness of the proposed method. It provides a theoretical and practical reference for parallel U-type assembly line balancing problem.


Sign in / Sign up

Export Citation Format

Share Document