Application Research on Cubic Spline Interpolation Based on Particle Swarm Optimization in Mine Pressure Missing Data

Author(s):  
Sun Gang ◽  
Wang Feng ◽  
Wang Xiuyou ◽  
Wang Hao ◽  
Chen Jing
2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Jianfang Lian ◽  
Wentao Yu ◽  
Kui Xiao ◽  
Weirong Liu

This paper proposed a cubic spline interpolation-based path planning method to maintain the smoothness of moving the robot’s path. Several path nodes were selected as control points for cubic spline interpolation. A full path was formed by interpolating on the path of the starting point, control points, and target point. In this paper, a novel chaotic adaptive particle swarm optimization (CAPSO) algorithm has been proposed to optimize the control points in cubic spline interpolation. In order to improve the global search ability of the algorithm, the position updating equation of the particle swarm optimization (PSO) is modified by the beetle foraging strategy. Then, the trigonometric function is adopted for the adaptive adjustment of the control parameters for CAPSO to weigh global and local search capabilities. At the beginning of the algorithm, particles can explore better regions in the global scope with a larger speed step to improve the searchability of the algorithm. At the later stage of the search, particles do fine search around the extremum points to accelerate the convergence speed of the algorithm. The chaotic map is also used to replace the random parameter of the PSO to improve the diversity of particle swarm and maintain the original random characteristics. Since all chaotic maps are different, the performance of six benchmark functions was tested to choose the most suitable one. The CAPSO algorithm was tested for different number of control points and various obstacles. The simulation results verified the effectiveness of the proposed algorithm compared with other algorithms. And experiments proved the feasibility of the proposed model in different dynamic environments.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Peyman Almasinejad ◽  
Amin Golabpour ◽  
Mohammad Reza Mollakhalili Meybodi ◽  
Kamal Mirzaie ◽  
Ahmad Khosravi

Missing data occurs in all research, especially in medical studies. Missing data is the situation in which a part of research data has not been reported. This will result in the incompatibility of the sample and the population and misguided conclusions. Missing data is usual in research, and the extent of it will determine how misinterpreted the conclusions will be. All methods of parameter estimation and prediction models are based on the assumption that the data are complete. Extensive missing data will result in false predictions and increased bias. In the present study, a novel method has been proposed for the imputation of medical missing data. The method determines what algorithm is suitable for the imputation of missing data. To do so, a multiobjective particle swarm optimization algorithm was used. The algorithm imputes the missing data in a way that if a prediction model is applied to the data, both specificity and sensitivity will be optimized. Our proposed model was evaluated using real data of gastric cancer and acute T-cell leukemia (ATLL). First, the model was then used to impute the missing data. Then, the missing data were imputed using deletion, average, expectation maximization, MICE, and missForest methods. Finally, the prediction model was applied for both imputed datasets. The accuracy of the prediction model for the first and the second imputation methods was 0.5 and 16.5, respectively. The novel imputation method was more accurate than similar algorithms like expectation maximization and MICE.


2018 ◽  
Vol 225 ◽  
pp. 05001
Author(s):  
Irham Azizan ◽  
Samsul Ariffin Bin Abdul Karim ◽  
S. Suresh Kumar Raju

This study discusses the application of two cubic spline i.e. natural and not-a-knot end boundary conditions to visualize and predict the rainfall data. The interpolation and the analysis of the rainfall data will be done on a monthly basis by using the MATLAB software. The rainfall data is obtained from Malaysia Meteorology Department for Ipoh and Petaling Jaya in year 2014 and 2015. The interpolating curves are then being compared and if there is any negative value on the interpolating curve on some sub-interval, that part will be replaced by using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP). We discuss the missing data imputation by using both splines.


Author(s):  
Tshilidzi Marwala

This chapter presents various optimization methods to optimize the missing data error equation, which is made out of the autoassociative neural networks with missing values as design variables. The four optimization techniques that are used are: genetic algorithm, particle swarm optimization, hill climbing and simulated annealing. These optimization methods are tested on two datasets, namely, the beer taster dataset and the fault identification dataset. The results that are obtained are then compared. For these datasets, the results indicate that genetic algorithm approach produced the highest accuracy when compared to simulated annealing and particle swarm optimization. However, the results of these four optimization methods are the same order of magnitude while hill climbing produces the lowest accuracy.


Sign in / Sign up

Export Citation Format

Share Document