Smart Water Monitoring System for Real-Time Water Quality and Usage Monitoring

Author(s):  
Manish Kumar Jha ◽  
Rajni Kumari Sah ◽  
M. S. Rashmitha ◽  
Rupam Sinha ◽  
B. Sujatha ◽  
...  
2021 ◽  
Vol 6 (3) ◽  
pp. 65-74
Author(s):  
Iman Hazwam Abd Halim ◽  
Ammar Ibrahim Mahamad ◽  
Mohd Faris Mohd Fuzi

Technology has advanced to the point that it can assist people in their daily lives. Human beings may benefit from this development in a variety of ways. Progress in river water monitoring is also one of them. There are many advantages in improving the river water monitoring system. The objective of this project is to develop an automated system for monitoring river water levels and quality with push notification features. Internet of Things (IoT) was implemented in this research by using NodeMCU as a microcontroller to connect both ultrasonic sensors and pH sensors to the Internet. An ultrasonic sensor is used to read the water level, and a pH sensor is used to read the water pH values. The results show the successful output from all of 10 time attempts to obtain more accurate test results. The results will be averaged to be analysed and concluded from the test. All the tests include testing for the accuracy of the ultrasonic sensor, the accuracy of the pH sensor, and the performance of the internet connection using integrated Wi-Fi module in NodeMCU microcontroller. The system test also shows that it performs perfectly with the requirement needed to send the real-time status of the water level, water quality and an alert to the user using the Telegram Bot API. This research can help to increase the level of awareness of the river water monitoring system. This research was done by looking at people's problems in the vicinity of the river area by producing a system tool that helps to monitor the river water in real-time status.


2020 ◽  
Vol 9 (07) ◽  
pp. 25113-25115
Author(s):  
Minakshi Roy ◽  
Prakar Pradhan ◽  
Jesson George ◽  
Nikhil Pradhan

Since we are now currently present in an era of Computing Technology, it is essential for everyone and everything to be connected to the internet. IOT is a technology that brings us more and more close to this goal. Our project comprises of a smart water monitoring system which is a small prototype for flood detection and avoidance system. This paper explains the working and the workflow of all the components present inside our project. The sensors sense the environment and sends real-time data to the cloud (firebase cloud) and users can view and access this data via their mobile platform. The model gives a warning after the water level rises to a particular height. Since it is a small scaled prototype for flood detection and avoidance system, the working of this model is good. The data are uploaded and changed in the cloud in precision to the sensor and real-time changes in the mobile application is achieved. This model can be used to greatly reduce the casualties in a devastating event of flood.


2019 ◽  
Vol 11 (24) ◽  
pp. 7110 ◽  
Author(s):  
K. A. Mamun ◽  
F. R. Islam ◽  
R. Haque ◽  
M. G. M. Khan ◽  
A. N. Prasad ◽  
...  

Over recent years, waters in and around Fiji has increasingly succumbed to a reasonable level of contamination. Water quality is defined with set of standards that clearly state the parameters of different properties in water. These standards are different at various geographic locations. The specific quantitative values of these parameters for the Fiji Islands are established by the Fiji National Drinking Water Quality Standards (FNDWQS). Fiji is geographically located in the vast Pacific Ocean, and requires a data collection framework for different water parameters to monitor water quality. The GIS framework system can effectively solve this continuously in real-time. With the end goal being to quantify different parameters; four (04) key performance indicators (KPI) are identified: Temperature, potential of hydrogen (pH), Oxidation Reduction Potential (ORP), and Conductivity. This paper presents a Smart Water Quality Monitoring System (SWQMS) which has been developed and deployed in five (05) Fijian locations (nodes) for the aforementioned KPIs measurement. The SWQMS interfaced with GIS and were powered using solar based Renewable Energy Source (REs). Finally, obtained data were tested and analyzed using statistical methods and verified comparing with the FNDWQS. The findings demonstrated that the system is capable of delivering an accurate and consistent measurement of water quality in real-time. Hence SWQMS could be a smart choice for various Pacific Island Countries (PICs) to use to monitor the water quality and in turn develop sustainable cities and societies.


2019 ◽  
Author(s):  
Jeba Anandh S ◽  
Anandharaj M ◽  
Aswinrajan J ◽  
Karankumar G ◽  
Karthik P

Author(s):  
Julian Kunze ◽  
Vincent Mayer ◽  
Lisa Thiergart ◽  
Saqib Javed ◽  
Patrick Scheppe ◽  
...  

Author(s):  
Kamalanathan Shanmugam ◽  
Muhammad Ehsan Rana ◽  
Roshenpal Singh Jaspal Singh

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Chen ◽  
Xiao Hao ◽  
JianRong Lu ◽  
Kui Yan ◽  
Jin Liu ◽  
...  

In order to solve the problems of high labor cost, long detection period, and low degree of information in current water environment monitoring, this paper proposes a lake water environment monitoring system based on LoRa and Internet of Things technology. The system realizes remote collection, data storage, dynamic monitoring, and pollution alarm for the distributed deployment of multisensor node information (water temperature, pH, turbidity, conductivity, and other water quality parameters). Moreover, the system uses STM32L151C8T6 microprocessor and multiple types of water quality sensors to collect water quality parameters in real time, and the data is packaged and sent to the LoRa gateway remotely by LoRa technology. Then, the gateway completes the bridging of LoRa link to IP link and forwards the water quality information to the Alibaba Cloud server. Finally, end users can realize the water quality control of monitored water area by monitoring management platform. The experimental results show that the system has a good performance in terms of real-time data acquisition accuracy, data transmission reliability, and pollution alarm success rate. The average relative errors of water temperature, pH, turbidity, and conductivity are 0.31%, 0.28%, 3.96%, and 0.71%, respectively. In addition, the signal reception strength of the system within 2 km is better than -81 dBm, and the average packet loss rate is only 94%. In short, the system’s high accuracy, high reliability, and long distance characteristics meet the needs of large area water quality monitoring.


2014 ◽  
Vol 85 (2) ◽  
pp. 641-647 ◽  
Author(s):  
Kwee Siong Tew ◽  
Ming-Yih Leu ◽  
Jih-Terng Wang ◽  
Chia-Ming Chang ◽  
Chung-Chi Chen ◽  
...  

2012 ◽  
Vol 452-453 ◽  
pp. 1301-1306
Author(s):  
Jian Jun Yi ◽  
Jian Gang Fan ◽  
Hui Jiang ◽  
Ying Cheng ◽  
Shao Li Chen

Real time Monitoring system is an important gurantee for the water quality. SDI-12 water sensors are used to monitor the water conductivity, temperature, dissolved oxygen, Ph, turbidity and other parameters in this paper. The signal of the wastewater is collected to the ARM chip, and then it is processed by the chip. The preliminary result will be displayed on a handheld terminal in real time. The handheld terminal also integrates the function of remote data transmission, which can transmit the original water data to a central server for storage via GPRS. Central server analyse the wastewater data based on ontology. Meanwhile, the system can also control water detector via remote control, which realizes the unattended effect.


Sign in / Sign up

Export Citation Format

Share Document