scholarly journals Automated Alert System for River Water Level and Water Quality Assessment using Telegram Bot API

2021 ◽  
Vol 6 (3) ◽  
pp. 65-74
Author(s):  
Iman Hazwam Abd Halim ◽  
Ammar Ibrahim Mahamad ◽  
Mohd Faris Mohd Fuzi

Technology has advanced to the point that it can assist people in their daily lives. Human beings may benefit from this development in a variety of ways. Progress in river water monitoring is also one of them. There are many advantages in improving the river water monitoring system. The objective of this project is to develop an automated system for monitoring river water levels and quality with push notification features. Internet of Things (IoT) was implemented in this research by using NodeMCU as a microcontroller to connect both ultrasonic sensors and pH sensors to the Internet. An ultrasonic sensor is used to read the water level, and a pH sensor is used to read the water pH values. The results show the successful output from all of 10 time attempts to obtain more accurate test results. The results will be averaged to be analysed and concluded from the test. All the tests include testing for the accuracy of the ultrasonic sensor, the accuracy of the pH sensor, and the performance of the internet connection using integrated Wi-Fi module in NodeMCU microcontroller. The system test also shows that it performs perfectly with the requirement needed to send the real-time status of the water level, water quality and an alert to the user using the Telegram Bot API. This research can help to increase the level of awareness of the river water monitoring system. This research was done by looking at people's problems in the vicinity of the river area by producing a system tool that helps to monitor the river water in real-time status.

Author(s):  
Rais Rais ◽  
Yerry Febrian Sabanise

Floodgate monitoring is related to water level monitoring. Problems that occur Weir information about the water level, water runoff, level, status of floodgates and recap results that can be seen on the web in real-time are not yet available, so monitoring the floodgates is difficult, less effective and maximum. Weir officials must go back and forth from the weir to the guard post and then to the control to move the floodgates. The purpose of the design of a sluice monitoring system is based on the website. Assist officers in monitoring floodgates to make it more effective and maximal. Using Wemos D1 R1 Microcontroller, Ultrasonic Sensor HC-SR04 to read water level, DC Motor moves the floodgates. LCD displays runoff and level. Siren as a danger warning. The trial results show that the system that has been made runs well. The system is able to open the floodgates through control of the web and runs automatically. Water runoff and level can be displayed on the LCD. Weir information about water levels, water runoff, levels, sluice status, and recap results can be viewed on the web in real time.


Author(s):  
Mohd Amirul Aizad M. Shahrani ◽  
Safaa Najah Saud Al-Humairi ◽  
Nurul Shahira Mohammad Puad ◽  
Muhammad Asyraf Zulkipli

2020 ◽  
Vol 9 (07) ◽  
pp. 25113-25115
Author(s):  
Minakshi Roy ◽  
Prakar Pradhan ◽  
Jesson George ◽  
Nikhil Pradhan

Since we are now currently present in an era of Computing Technology, it is essential for everyone and everything to be connected to the internet. IOT is a technology that brings us more and more close to this goal. Our project comprises of a smart water monitoring system which is a small prototype for flood detection and avoidance system. This paper explains the working and the workflow of all the components present inside our project. The sensors sense the environment and sends real-time data to the cloud (firebase cloud) and users can view and access this data via their mobile platform. The model gives a warning after the water level rises to a particular height. Since it is a small scaled prototype for flood detection and avoidance system, the working of this model is good. The data are uploaded and changed in the cloud in precision to the sensor and real-time changes in the mobile application is achieved. This model can be used to greatly reduce the casualties in a devastating event of flood.


2021 ◽  
Vol 12 (3) ◽  
pp. 151
Author(s):  
Komang Try Wiguna Adhitya Primantara ◽  
Putu Wira Bhuana ◽  
Kyle Doran

Environmental pollution is a global issue that occurs at this time. It is caused by various human activities that produce pollutants that endanger their lives. By utilizing current technology, it is possible to design a Water and Air Quality Monitoring System based on the Internet of Things to monitor air and water quality quickly and in real-time in the surrounding environment. The users can access this system via the web and Android / IOS mobile applications that display the data obtained by the sensor in the form of real-time graphics of water and air conditions. In addition, this system consists of several sensor nodes in charge of providing field data regarding the parameters used as the basis for assessing water and air quality according to the applicable standards in Indonesia. Sensors for water using a Turbidity Sensor, DS18B20 Sensor, PH Sensor, DHT 11, and TDS (Total Dissolved Solids) Sensor. Sensors for air consist of the DHT11 sensor, the MQ-7sensor, the MQ-135 sensor, and the dust sensor GP2Y1010AU0F.


10.32698/0852 ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 14
Author(s):  
Sharifah Nurulhuda Tuan Mohd Yasin ◽  
Mohd Fauzi Mohd Yunus ◽  
Nur Bahiyah Abdul Wahab

Biological diversity or biodiversity is an important element in the river water management system. The interaction between the various organisms in the river makes it a very complex ecological system. Therefore, water safety issues are a very important issue. Consumer complaints and reports made by the relevant government departments indicate that consumers are dissatisfied with the quality of water supplied. Hence, a concept in which equipment, machines, sensors and devices are connected to the Internet and there is data collection and transfer through the network developed to follow the river water quality index. Integration of the elements of sustainability and IR4.0 through the Internet of Thing by adopting electronic and Internet applications of Thing has a very positive impact to refresh the approach to lesions in Malaysia. The project aims to develop a wireless water quality monitoring system that aids in continuous measurements of water conditions based on pH and turbidity measurements. The developed system was successfully detecting both the pH and turbidity values. Water analysis and monitoring is a very important aspect of water conservation and protection. Water is a vital resource that runs more quickly overtime. To ensure continued supply of safe, clean drinking water, together as community to protect and to this vital resource.


Author(s):  
Yu Liu ◽  
Hao Wang ◽  
Wenwen Feng ◽  
Haocheng Huang

Water level management is an important part of urban water system management. In flood season, the river should be controlled to ensure the ecological and landscape water level. In non-flood season, the water level should be lowered to ensure smooth drainage. In urban areas, the response of the river water level to rainfall and artificial regulation is relatively rapid and strong. Therefore, building a mathematical model to forecast the short-term trend of urban river water levels can provide a scientific basis for decision makers and is of great significance for the management of urban water systems. With a focus on the high uncertainty of urban river water level prediction, a real-time rolling forecast method for the short-term water levels of urban internal rivers and external rivers was constructed, based on long short-term memory (LSTM). Fuzhou City, China was used as the research area, and the forecast performance of LSTM was analyzed. The results confirm the feasibility of LSTM in real-time rolling forecasting of water levels. The absolute errors at different times in each forecast were compared, and the various characteristics and causes of the errors in the forecast process were analyzed. The forecast performance of LSTM under different rolling intervals and different forecast periods was compared, and the recommended values are provided as a reference for the construction of local operational forecast systems.


2019 ◽  
Vol 155 ◽  
pp. 161-168 ◽  
Author(s):  
Mohammad Salah Uddin Chowdury ◽  
Talha Bin Emran ◽  
Subhasish Ghosh ◽  
Abhijit Pathak ◽  
Mohd. Manjur Alam ◽  
...  

Author(s):  
Muhammad Aznil Ab Aziz ◽  
M. F. Abas ◽  
Mohamad Khairul Anwar Abu Bashri ◽  
N. Md. Saad ◽  
M. H. Ariff

Water quality is the main aspect to determine the quality of aquatic systems. Poor water quality will pose a health risk for people and ecosystems. The old methods such as collecting samples of water manually and testing and analysing at lab will cause the time consuming, wastage of man power and not economical. A system is needed to provide a real-time data for environmental protection and tracking pollution sources. This paper aims to describe on how to monitor water quality continuously through IoT platform. Water Quality Catchment Monitoring System was introduced to check and monitor water quality continuously. It’s features five sensors which are temperature sensor, light intensity sensor, pH sensor, GPS tracker and Inertia Movement Unit (IMU). IMU is a new feature in the system where the direction of x and y is determined for planning and find out where a water quality problem exists by determining the flow of water. The system uses an internet wireless connection using the ESP8266 Wi-Fi Shield Module as a connection between Arduino Mega2560 and laptop. ThingSpeak application acts as an IoT platform used for real-time data monitoring.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


Sign in / Sign up

Export Citation Format

Share Document