The Software Solution of the Overload Capacity of a Three-Phase Asynchronous Motor

Author(s):  
Rano Gazieva ◽  
Sharafidin Aynakulov ◽  
Aziz Nigmatov ◽  
Barna Rakhmankulova ◽  
Otabek Khafizov ◽  
...  
Author(s):  
Wang Li ◽  
Yue Liu ◽  
Junyong Sun ◽  
Lingzhi Yi ◽  
Jian Zhao ◽  
...  

2011 ◽  
Vol 328-330 ◽  
pp. 1846-1850
Author(s):  
Xi Zhang ◽  
Jie Yang ◽  
Wen Chao Chen ◽  
Qi Zhou Huang

The traditional mine accumulator locomotive usually takes the DC motor for its power source. And the series-wound resistance method is usually used in its speed control. With the development of power electronics technology, the AC drive system based on power electronic converters can be realized. Especially after the realization of large-scale integration and compmer controling, the performance of AC variale speed has been improved a lot. In operation, the mine accumulator locomotive not only works in frequent starting, breaking, accelerating and decelerating conditions, but also has to adapt to the bad pavement. The AC asynchronous motor has simple stmcture, sturdy and durable, and it could save power by notusing resistance when it was used in speed control. With this characteristics, the AC speed control system has the feature of fast response and high overload capacity. The AC speed system is the key factor for efficient operation of mining accumulator locomotive. Compared with the traditional DC speed system, the principle of DTC is introduced in this paper. And the advantage of operating performance and economic benefit of mining accumulator locomotive with AC speed system based on DTC is analyzed from practical application.


Author(s):  
Laura Collazo Solar ◽  
Angel A. Costa Montiel ◽  
Miriam Vilaragut Llanes ◽  
Vladimir Sousa Santos

In this paper, a new steady-state model of a three-phase asynchronous motor is proposed to be used in the studies of electrical power systems. The model allows for obtaining the response of the demand for active and reactive power as a function of voltage and frequency. The contribution of the model is the integration of the characteristics of the mechanical load that can drive motors, either constant or variable load. The model was evaluated on a 2500 kW and 6000 V motor, for the two types of mechanical load, in a wide range of voltage and frequency, as well as four load factors. As a result of the evaluation, it was possible to verify that, for the nominal frequency and voltage variation, the type of load does not influence the behavior of the powers and that the reactive power is very sensitive to the voltage variation. In the nominal voltage and frequency deviation scenario, it was found that the type of load influences the behavior of the active and reactive power, especially in the variable load. The results demonstrate the importance of considering the model proposed in the simulation software of electrical power systems.


Author(s):  
K. Vinoth Kumar ◽  
Prawin Angel Michael

This chapter deals with the implementation of a PC-based monitoring and fault identification scheme for a three-phase induction motor using artificial neural networks (ANNs). To accomplish the task, a hardware system is designed and built to acquire three phase voltages and currents from a 3.3KW squirrel-cage, three-phase induction motor. A software program is written to read the voltages and currents, which are first used to train a feed-forward neural network structure. The trained network is placed in a Lab VIEW-based program formula node that monitors the voltages and currents online and displays the fault conditions and turns the motor. The complete system is successfully tested in real time by creating different faults on the motor.


Author(s):  
Abid E. Mansuri ◽  
Shaikh Mo. Suhel ◽  
Vipul N. Rajpurohit ◽  
Smriti S. Sethia

Author(s):  
Tao Wang ◽  
Jikun Li ◽  
Qiang Hou

In this article, the three-phase asynchronous motor is taken as the research object, and the deadbeat predictive control is the control core, and its control performance is studied. Considering the overshoot of flux linkage and speed response in deadbeat predictive control, an improved deadbeat predictive control algorithm based on synergy theory is proposed. Different from deadbeat predictive control, improved deadbeat predictive control can control the flux linkage and speed independently through two adjustment parameters, which are achieved through the manifold of synergy theory. To accurately obtain the feedback flux linkage and load torque in the control, a flux observer and a load torque observer are designed. Based on these, a simulation platform is built, and the control performance of the two control algorithms is compared. The robustness of the two control algorithms is further verified by changing parameters. Finally, the experimental platform of three-phase asynchronous motor is built in this article. The experimental program based on deadbeat predictive control is designed. The no-load experiment and loading experiment are carried out, respectively. The feasibility of the algorithm is verified by experimental data.


Sign in / Sign up

Export Citation Format

Share Document