rotor faults
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 35)

H-INDEX

23
(FIVE YEARS 6)

2021 ◽  
Vol 9 (5) ◽  
pp. 191
Author(s):  
Hamza Sabir ◽  
Mohammed Ouassaid ◽  
Nabil Ngote ◽  
Mohamed Benbouzid

Author(s):  
Omar Alshorman ◽  
Ahmad Alshorman

Nowadays, induction motor (IM) is extensively used in industry, including mechanical and electrical applications. However, three main types of IM faults have been discussed in the literature, bearing, stator, and rotor. Importantly, stator and rotor faults represent approximately 50%. Traditional condition monitoring (CM) and fault diagnosis (FD) methods require a high processing cost and much experience knowledge. To tackle this challenge, artificial intelligent (AI) based CM and FD techniques are extensively developed. However, there have been many review research papers for intelligent CM and FD machine learning methods of rolling elements bearings of IM in the literature. Whereas there is a lack in the literature, and there are not many review papers for both stator and rotor intelligent CM and FD. Thus, the proposed study's main contribution is in reviewing the CM and FD of IM, especially for the stator and the rotor, based on AI methods. The paper also provides discussions on the main challenges and possible future works.


2021 ◽  
Vol 11 (6) ◽  
pp. 2806
Author(s):  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anouar Belahcen ◽  
Ants Kallaste ◽  
Anton Rassõlkin ◽  
...  

This paper presents the modeling and the broken rotor bar fault diagnostics by time–frequency analysis of the motor current under an extended startup transient time. The transient current-based nonstationary signal is retrieved and investigated for its time–frequency response to segregate the rotor faults and spatial harmonics. For studying the effect of reduced voltage on various parameters and the theoretical definition of the fault patterns, the winding function analysis (WFA)-based model is presented first. Moreover, an algorithm to improve the spectrum legibility is proposed. It is shown that by efficient utilization of the attenuation filter and consideration of the area containing the maximum power spectral density, the diagnostic algorithm gives promising results. The results are based on the machine’s analytical model and the measurements taken from the laboratory setup.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lipeng Wei ◽  
Xiang Rong ◽  
Haibo Wang ◽  
Shuohang Yu ◽  
Yang Zhang

The detection results need to be analyzed and distinguished by professional technicians in the fault detection methods for induction motors based on signal processing and it is difficult to realize the automatic identification of stator and rotor faults. A method for identifying stator and rotor faults of induction motors based on machine vision is proposed to solve this problem. Firstly, Park’s vector approach (PVA) is used to analyze the three-phase currents of the motor to obtain Park’s vector ring (PVR). Then, the local binary patterns (LBP) and gray level cooccurrence matrix (GLCM) are combined to extract the image features of PVR. Finally, the vectors of image features are used as input and the types of induction motor faults are identified with the help of a random forest (RF) classifier. The proposed method has achieved high identification accuracy in both the Maxwell simulation experiment and the actual motor experiment, which are 100% and 95.83%, respectively.


Sign in / Sign up

Export Citation Format

Share Document