An efficient algorithm for topological map construction in a planar environment explored using proximity sensors

Author(s):  
P.R. Kumar ◽  
K. Sridharan ◽  
S. Srinivasan
2017 ◽  
Vol 42 (1) ◽  
pp. 65-81 ◽  
Author(s):  
Huei-Yung Lin ◽  
Chia-Wei Yao ◽  
Kai-Sheng Cheng ◽  
Van Luan Tran

2019 ◽  
Vol 9 (5) ◽  
pp. 816 ◽  
Author(s):  
Fei Wang ◽  
Yuqiang Liu ◽  
Ling Xiao ◽  
Chengdong Wu ◽  
Hao Chu

In the human–machine interactive scene of the service robot, obstacle information and destination information are both required, and both kinds of information need to be saved and used at the same time. In order to solve this problem, this paper proposes a topological map construction pipeline based on regional dynamic growth and a map representation method based on the conical space model. Based on the metric map, the construction pipeline can initialize the region growth point on the trajectory of the mobile robot. Next, the topological region is divided by the region dynamic growth algorithm, the map structure is simplified by the minimum spanning tree, and the similar region is merged by the region merging algorithm. After that, the parameter TM (topological information in the map) and the parameter OM (occupied information in the map) are used to represent the topological information and the occupied information. Finally, a topological map represented by the colored picture is saved by converting to color information. It is highlighted that the topological map construction pipeline is not limited by the structure of the environment, and can be automatically adjusted according to the actual environment structure. What’s more, the topological map representation method can save two kinds of map information at the same time, which simplifies the map representation structure. The experimental results show that the map construction method is flexible, and that resources such as calculation and storage are less consumed. The map representation method is convenient to use and improves the efficiency of the map in preservation.


Author(s):  
Fei Wang ◽  
Yuqiang Liu ◽  
Yahui Zhang ◽  
Yu Gao ◽  
Ling Xiao ◽  
...  

Purpose A robotic wheelchair system was designed to assist disabled people with disabilities to walk. Design/methodology/approach An anticipated sharing control strategy based on topological map is proposed in this paper, which is used to assist robotic wheelchairs to realize interactive navigation. Then, a robotic wheelchair navigation control system based on the brain-computer interface and topological map was designed and implemented. Findings In the field of robotic wheelchairs, the problems of poor use, narrow application range and low humanization are still not improved. Originality/value In the system, the topological map construction is not restricted by the environment structure, which helps to expand the scope of application; the shared control system can predict the users’ intention and replace the users’ decision to realize human-machine interactive navigation, which has higher security, robustness and comfort.


Author(s):  
P.J. Phillips ◽  
J. Huang ◽  
S. M. Dunn

In this paper we present an efficient algorithm for automatically finding the correspondence between pairs of stereo micrographs, the key step in forming a stereo image. The computation burden in this problem is solving for the optimal mapping and transformation between the two micrographs. In this paper, we present a sieve algorithm for efficiently estimating the transformation and correspondence.In a sieve algorithm, a sequence of stages gradually reduce the number of transformations and correspondences that need to be examined, i.e., the analogy of sieving through the set of mappings with gradually finer meshes until the answer is found. The set of sieves is derived from an image model, here a planar graph that encodes the spatial organization of the features. In the sieve algorithm, the graph represents the spatial arrangement of objects in the image. The algorithm for finding the correspondence restricts its attention to the graph, with the correspondence being found by a combination of graph matchings, point set matching and geometric invariants.


2016 ◽  
Vol 2016 (7) ◽  
pp. 1-6
Author(s):  
Sergey Makov ◽  
Vladimir Frantc ◽  
Viacheslav Voronin ◽  
Igor Shrayfel ◽  
Vadim Dubovskov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document