Novel Convolutional Neural Network that Uses a Two-Stage Inception Module for Bacterial Blight and Brown Spot Identification in Rice plant

Author(s):  
Venkateshwar Motamarri ◽  
Sreejith Sreenivasan
Author(s):  
Achmad Ramadhanna’il Rasjava ◽  
Aditya Wisnugraha Sugiyarto ◽  
Yori Kurniasari ◽  
Syaifullah Yusuf Ramadhan

As a rice-producing plant, rice plant (Oryza sativa L.) is one of the most important crops in Indonesia. Rice production is increasing every year along with an increase in rice demand and population.The amount of rice production is affected by the condition of the rice plants. The worse the condition of rice plants, the rice production will also lower. Rice plant is very susceptible to diseases or pests that can reduce its productivity, including brown spot disease, leaf smut and bacterial leaf blight. As the development of science and technology, currently known as Artificial Intelligence. Artificial intelligence is a combination of several scientific disciplines such as mathematics, statistics, computer science, and even social science. Using artificial intelligence, the system now have the ability to interpret external data correctly to learn from the data and then use the learning to achieve certain goals through flexible adaptation. The artificial intelligence fields consists of several branches, such as machine learning and deep learning. Neural Network (NN) is one of the methods used in the deep learning.NN has many types, one of which is the Convolutional Neural Network (CNN). CNN is the best-knownmethod used for processingimages data compared to other types of NN. Therefore, in this study the identification of rice plants diseases was carriedout using CNN method. From this study,better results were obtained compared to other methods, obtaining 100% accuracy for training data and 86,67% for testing data. The model obtained by the CNN method can be used for detecting 3 different types of rice plants diseases, there are brown spots, leaf smuts, or bacterial leaf blight disease based on the physical images of rice plant leaves.


2020 ◽  
Vol 53 (2) ◽  
pp. 15374-15379
Author(s):  
Hu He ◽  
Xiaoyong Zhang ◽  
Fu Jiang ◽  
Chenglong Wang ◽  
Yingze Yang ◽  
...  

2018 ◽  
Vol 61 (5) ◽  
pp. 1461-1474 ◽  
Author(s):  
Zhongqi Lin ◽  
Shaomin Mu ◽  
Aiju Shi ◽  
Chao Pang ◽  
Xiaoxiao Sun

Abstract. Traditional methods for detecting maize leaf diseases (such as leaf blight, sooty blotch, brown spot, rust, and purple leaf sheaf) are typically labor-intensive and strongly subjective. With the aim of achieving high accuracy and efficiency in the identification of maize leaf diseases from digital imagery, this article proposes a novel multichannel convolutional neural network (MCNN). The MCNN is composed of an input layer, five convolutional layers, three subsampling layers, three fully connected layers, and an output layer. Using a method that imitates human visual behavior in video saliency detection, the first and second subsampling layers are connected directly with the first fully connected layer. In addition, the mixed modes of pooling and normalization methods, rectified linear units (ReLU), and dropout are introduced to prevent overfitting and gradient diffusion. The learning process corresponding to the network structure is also illustrated. At present, there are no large-scale images of maize leaf disease for use as experimental samples. To test the proposed MCNN, 10,820 RGB images containing five types of disease were collected from maize planting areas in Shandong Province, China. The original images could not be used directly in identification experiments because of noise and irrelevant regions. They were therefore denoised and segmented by homomorphic filtering and region of interest (ROI) segmentation to construct a standard database. A series of experiments on 8 GB graphics processing units (GPUs) showed that the MCNN could achieve an average accuracy of 92.31% and a high efficiency in the identification of maize leaf diseases. The multichannel design and the integration of different innovations proved to be helpful methods for boosting performance. Keywords: Artificial intelligence, Convolutional neural network, Deep learning, Image classification, Machine learning algorithms, Maize leaf disease.


2020 ◽  
Vol 176 ◽  
pp. 107681
Author(s):  
Di Gai ◽  
Xuanjing Shen ◽  
Haipeng Chen ◽  
Pengxiang Su

Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1806
Author(s):  
Lu Meng ◽  
Qianqian Zhang ◽  
Sihang Bu

The liver is an essential metabolic organ of the human body, and malignant liver tumors seriously affect and threaten human life. The segmentation algorithm for liver and liver tumors is one of the essential branches of computer-aided diagnosis. This paper proposed a two-stage liver and tumor segmentation algorithm based on the convolutional neural network (CNN). In the present study, we used two stages to segment the liver and tumors: liver localization and tumor segmentation. In the liver localization stage, the network segments the liver region, adopts the encoding–decoding structure and long-distance feature fusion operation, and utilizes the shallow features’ spatial information to improve liver identification. In the tumor segmentation stage, based on the liver segmentation results of the first two steps, a CNN model was designed to accurately identify the liver tumors by using the 2D image features and 3D spatial features of the CT image slices. At the same time, we use the attention mechanism to improve the segmentation performance of small liver tumors. The proposed algorithm was tested on the public data set Liver Tumor Segmentation Challenge (LiTS). The Dice coefficient of liver segmentation was 0.967, and the Dice coefficient of tumor segmentation was 0.725. The proposed algorithm can accurately segment the liver and liver tumors in CT images. Compared with other state-of-the-art algorithms, the segmentation results of the proposed algorithm rank the highest in the Dice coefficient.


Sign in / Sign up

Export Citation Format

Share Document