A Novel Deep Transfer Learning Method for Airborne Remote Sensing Semantic Segmentation Based on Fully Convolutional Network

Author(s):  
Yanjuan Liu ◽  
Yingying Kong ◽  
Bowen Zhang ◽  
Xiangyang Peng ◽  
Henry Leung
2021 ◽  
Vol 13 (16) ◽  
pp. 3211
Author(s):  
Tian Tian ◽  
Zhengquan Chu ◽  
Qian Hu ◽  
Li Ma

Semantic segmentation is a fundamental task in remote sensing image interpretation, which aims to assign a semantic label for every pixel in the given image. Accurate semantic segmentation is still challenging due to the complex distributions of various ground objects. With the development of deep learning, a series of segmentation networks represented by fully convolutional network (FCN) has made remarkable progress on this problem, but the segmentation accuracy is still far from expectations. This paper focuses on the importance of class-specific features of different land cover objects, and presents a novel end-to-end class-wise processing framework for segmentation. The proposed class-wise FCN (C-FCN) is shaped in the form of an encoder-decoder structure with skip-connections, in which the encoder is shared to produce general features for all categories and the decoder is class-wise to process class-specific features. To be detailed, class-wise transition (CT), class-wise up-sampling (CU), class-wise supervision (CS), and class-wise classification (CC) modules are designed to achieve the class-wise transfer, recover the resolution of class-wise feature maps, bridge the encoder and modified decoder, and implement class-wise classifications, respectively. Class-wise and group convolutions are adopted in the architecture with regard to the control of parameter numbers. The method is tested on the public ISPRS 2D semantic labeling benchmark datasets. Experimental results show that the proposed C-FCN significantly improves the segmentation performances compared with many state-of-the-art FCN-based networks, revealing its potentials on accurate segmentation of complex remote sensing images.


2019 ◽  
Vol 39 (4) ◽  
pp. 0428004 ◽  
Author(s):  
吴止锾 Wu Zhihuan ◽  
高永明 Gao Yongming ◽  
李磊 Li Lei ◽  
薛俊诗 Xue Junshi

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3848
Author(s):  
Wei Cui ◽  
Meng Yao ◽  
Yuanjie Hao ◽  
Ziwei Wang ◽  
Xin He ◽  
...  

Pixel-based semantic segmentation models fail to effectively express geographic objects and their topological relationships. Therefore, in semantic segmentation of remote sensing images, these models fail to avoid salt-and-pepper effects and cannot achieve high accuracy either. To solve these problems, object-based models such as graph neural networks (GNNs) are considered. However, traditional GNNs directly use similarity or spatial correlations between nodes to aggregate nodes’ information, which rely too much on the contextual information of the sample. The contextual information of the sample is often distorted, which results in a reduction in the node classification accuracy. To solve this problem, a knowledge and geo-object-based graph convolutional network (KGGCN) is proposed. The KGGCN uses superpixel blocks as nodes of the graph network and combines prior knowledge with spatial correlations during information aggregation. By incorporating the prior knowledge obtained from all samples of the study area, the receptive field of the node is extended from its sample context to the study area. Thus, the distortion of the sample context is overcome effectively. Experiments demonstrate that our model is improved by 3.7% compared with the baseline model named Cluster GCN and 4.1% compared with U-Net.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 673-682
Author(s):  
Jian Ji ◽  
Xiaocong Lu ◽  
Mai Luo ◽  
Minghui Yin ◽  
Qiguang Miao ◽  
...  

2020 ◽  
Vol 57 (10) ◽  
pp. 102801
Author(s):  
张家强 Zhang Jiaqiang ◽  
李潇雁 Li Xiaoyan ◽  
李丽圆 Li Liyuan ◽  
孙鹏程 Sun Pengcheng ◽  
苏晓峰 Su Xiaofeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document