scholarly journals Semantic Segmentation of Remote Sensing Images Using Transfer Learning and Deep Convolutional Neural Network With Dense Connection

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 116744-116755 ◽  
Author(s):  
Binge Cui ◽  
Xin Chen ◽  
Yan Lu
Author(s):  
Amith Chandrakant Chawan ◽  
Vaibhav K Kakade ◽  
Jagannath K Jadhav

Remote sensing imaging (RSI) technology has recently been identified as an effective photogrammetric data acquisition platform to rapidly provide high resolution images due to its profitability, its ability to fly at low altitude and the ability to analysis in dangerous areas. The various kinds of classification techniques are have been used for flood extent mapping for finding the flood affected region, but based on the color region based analysis the classified hazardous area has very complex. Due to over the above issues in this work there significant enhancements have appeared in the classification of remote sensing images using Contiguous Deep Convolutional Neural Network (CDCNN).In the flood detection system the four different kinds of process like preprocessing, segmentation, feature extraction and the Contiguous Deep Convolutional Neural Network (CDCNN) has been executed for identifying the flood defected region. This works also investigates and compare with the possible methods with the proposed CDCNN for accurately identified by the Classification details of the RSI


2020 ◽  
Vol 9 (4) ◽  
pp. 189 ◽  
Author(s):  
Hongxiang Guo ◽  
Guojin He ◽  
Wei Jiang ◽  
Ranyu Yin ◽  
Lei Yan ◽  
...  

Automatic water body extraction method is important for monitoring floods, droughts, and water resources. In this study, a new semantic segmentation convolutional neural network named the multi-scale water extraction convolutional neural network (MWEN) is proposed to automatically extract water bodies from GaoFen-1 (GF-1) remote sensing images. Three convolutional neural networks for semantic segmentation (fully convolutional network (FCN), Unet, and Deeplab V3+) are employed to compare with the water bodies extraction performance of MWEN. Visual comparison and five evaluation metrics are used to evaluate the performance of these convolutional neural networks (CNNs). The results show the following. (1) The results of water body extraction in multiple scenes using the MWEN are better than those of the other comparison methods based on the indicators. (2) The MWEN method has the capability to accurately extract various types of water bodies, such as urban water bodies, open ponds, and plateau lakes. (3) By fusing features extracted at different scales, the MWEN has the capability to extract water bodies with different sizes and suppress noise, such as building shadows and highways. Therefore, MWEN is a robust water extraction algorithm for GaoFen-1 satellite images and has the potential to conduct water body mapping with multisource high-resolution satellite remote sensing data.


2020 ◽  
Author(s):  
Wenmei Li ◽  
Juan Wang ◽  
Ziteng Wang ◽  
Yu Wang ◽  
Yan Jia ◽  
...  

Deep convolutional neural network (DeCNN) is considered one of promising techniques for classifying the high spatial resolution remote sensing (HSRRS) scenes, due to its powerful feature extraction capabilities. It is well-known that huge high quality labeled datasets are required for achieving the better classification performances and preventing over-fitting, during the training DeCNN model process. However, the lack of high quality datasets often limits the applications of DeCNN. In order to solve this problem, in this paper, we propose a HSRRS image scene classification method using transfer learning and DeCNN (TL-DeCNN) model in few shot HSRRS scene samples. Specifically, three typical DeCNNs of VGG19, ResNet50 and InceptionV3, trained on the ImageNet2015, the weights of their convolutional layer for that of the TL-DeCNN are transferred, respectively. Then, TL-DeCNN just needs to fine-tune its classification module on the few shot HSRRS scene samples in a few epochs. Experimental results indicate that our proposed TL-DeCNN method provides absolute dominance results without over-fitting, when compared with the VGG19, ResNet50 and InceptionV3, directly trained on the few shot samples.


2020 ◽  
Author(s):  
Wenmei Li ◽  
Juan Wang ◽  
Ziteng Wang ◽  
Yu Wang ◽  
Yan Jia ◽  
...  

Deep convolutional neural network (DeCNN) is considered one of promising techniques for classifying the high spatial resolution remote sensing (HSRRS) scenes, due to its powerful feature extraction capabilities. It is well-known that huge high quality labeled datasets are required for achieving the better classification performances and preventing over-fitting, during the training DeCNN model process. However, the lack of high quality datasets often limits the applications of DeCNN. In order to solve this problem, in this paper, we propose a HSRRS image scene classification method using transfer learning and DeCNN (TL-DeCNN) model in few shot HSRRS scene samples. Specifically, three typical DeCNNs of VGG19, ResNet50 and InceptionV3, trained on the ImageNet2015, the weights of their convolutional layer for that of the TL-DeCNN are transferred, respectively. Then, TL-DeCNN just needs to fine-tune its classification module on the few shot HSRRS scene samples in a few epochs. Experimental results indicate that our proposed TL-DeCNN method provides absolute dominance results without over-fitting, when compared with the VGG19, ResNet50 and InceptionV3, directly trained on the few shot samples.


Sign in / Sign up

Export Citation Format

Share Document