scholarly journals Knowledge and Geo-Object Based Graph Convolutional Network for Remote Sensing Semantic Segmentation

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3848
Author(s):  
Wei Cui ◽  
Meng Yao ◽  
Yuanjie Hao ◽  
Ziwei Wang ◽  
Xin He ◽  
...  

Pixel-based semantic segmentation models fail to effectively express geographic objects and their topological relationships. Therefore, in semantic segmentation of remote sensing images, these models fail to avoid salt-and-pepper effects and cannot achieve high accuracy either. To solve these problems, object-based models such as graph neural networks (GNNs) are considered. However, traditional GNNs directly use similarity or spatial correlations between nodes to aggregate nodes’ information, which rely too much on the contextual information of the sample. The contextual information of the sample is often distorted, which results in a reduction in the node classification accuracy. To solve this problem, a knowledge and geo-object-based graph convolutional network (KGGCN) is proposed. The KGGCN uses superpixel blocks as nodes of the graph network and combines prior knowledge with spatial correlations during information aggregation. By incorporating the prior knowledge obtained from all samples of the study area, the receptive field of the node is extended from its sample context to the study area. Thus, the distortion of the sample context is overcome effectively. Experiments demonstrate that our model is improved by 3.7% compared with the baseline model named Cluster GCN and 4.1% compared with U-Net.

2020 ◽  
Vol 12 (4) ◽  
pp. 701 ◽  
Author(s):  
Jing Zhang ◽  
Shaofu Lin ◽  
Lei Ding ◽  
Lorenzo Bruzzone

The semantic segmentation of remote sensing images (RSIs) is important in a variety of applications. Conventional encoder-decoder-based convolutional neural networks (CNNs) use cascade pooling operations to aggregate the semantic information, which results in a loss of localization accuracy and in the preservation of spatial details. To overcome these limitations, we introduce the use of the high-resolution network (HRNet) to produce high-resolution features without the decoding stage. Moreover, we enhance the low-to-high features extracted from different branches separately to strengthen the embedding of scale-related contextual information. The low-resolution features contain more semantic information and have a small spatial size; thus, they are utilized to model the long-term spatial correlations. The high-resolution branches are enhanced by introducing an adaptive spatial pooling (ASP) module to aggregate more local contexts. By combining these context aggregation designs across different levels, the resulting architecture is capable of exploiting spatial context at both global and local levels. The experimental results obtained on two RSI datasets show that our approach significantly improves the accuracy with respect to the commonly used CNNs and achieves state-of-the-art performance.


Author(s):  
L. He ◽  
Z. Wu ◽  
Y. Zhang ◽  
Z. Hu

Abstract. In the remote sensing imagery, spectral and texture features are always complex due to different landscapes, which leads to misclassifications in the results of semantic segmentation. The object-based Markov random field provides an effective solution to this problem. However, the state-of-the-art object-based Markov random field still needs to be improved. In this paper, an object-based Markov Random Field model based on hierarchical segmentation tree with auxiliary labels is proposed. A remote sensing imagery is first segmented and the object-based hierarchical segmentation tree is built based on initial segmentation objects and merging criteria. And then, the object-based Markov random field with auxiliary label fields is established on the hierarchical tree structure. A probabilistic inference is applied to solve this model by iteratively updating label field and auxiliary label fields. In the experiment, this paper utilized a Worldview-3 image to evaluate the performance, and the results show the validity and the accuracy of the presented semantic segmentation approach.


2021 ◽  
Vol 13 (16) ◽  
pp. 3211
Author(s):  
Tian Tian ◽  
Zhengquan Chu ◽  
Qian Hu ◽  
Li Ma

Semantic segmentation is a fundamental task in remote sensing image interpretation, which aims to assign a semantic label for every pixel in the given image. Accurate semantic segmentation is still challenging due to the complex distributions of various ground objects. With the development of deep learning, a series of segmentation networks represented by fully convolutional network (FCN) has made remarkable progress on this problem, but the segmentation accuracy is still far from expectations. This paper focuses on the importance of class-specific features of different land cover objects, and presents a novel end-to-end class-wise processing framework for segmentation. The proposed class-wise FCN (C-FCN) is shaped in the form of an encoder-decoder structure with skip-connections, in which the encoder is shared to produce general features for all categories and the decoder is class-wise to process class-specific features. To be detailed, class-wise transition (CT), class-wise up-sampling (CU), class-wise supervision (CS), and class-wise classification (CC) modules are designed to achieve the class-wise transfer, recover the resolution of class-wise feature maps, bridge the encoder and modified decoder, and implement class-wise classifications, respectively. Class-wise and group convolutions are adopted in the architecture with regard to the control of parameter numbers. The method is tested on the public ISPRS 2D semantic labeling benchmark datasets. Experimental results show that the proposed C-FCN significantly improves the segmentation performances compared with many state-of-the-art FCN-based networks, revealing its potentials on accurate segmentation of complex remote sensing images.


2021 ◽  
Vol 14 (1) ◽  
pp. 102
Author(s):  
Xin Li ◽  
Tao Li ◽  
Ziqi Chen ◽  
Kaiwen Zhang ◽  
Runliang Xia

Semantic segmentation has been a fundamental task in interpreting remote sensing imagery (RSI) for various downstream applications. Due to the high intra-class variants and inter-class similarities, inflexibly transferring natural image-specific networks to RSI is inadvisable. To enhance the distinguishability of learnt representations, attention modules were developed and applied to RSI, resulting in satisfactory improvements. However, these designs capture contextual information by equally handling all the pixels regardless of whether they around edges. Therefore, blurry boundaries are generated, rising high uncertainties in classifying vast adjacent pixels. Hereby, we propose an edge distribution attention module (EDA) to highlight the edge distributions of leant feature maps in a self-attentive fashion. In this module, we first formulate and model column-wise and row-wise edge attention maps based on covariance matrix analysis. Furthermore, a hybrid attention module (HAM) that emphasizes the edge distributions and position-wise dependencies is devised combing with non-local block. Consequently, a conceptually end-to-end neural network, termed as EDENet, is proposed to integrate HAM hierarchically for the detailed strengthening of multi-level representations. EDENet implicitly learns representative and discriminative features, providing available and reasonable cues for dense prediction. The experimental results evaluated on ISPRS Vaihingen, Potsdam and DeepGlobe datasets show the efficacy and superiority to the state-of-the-art methods on overall accuracy (OA) and mean intersection over union (mIoU). In addition, the ablation study further validates the effects of EDA.


2021 ◽  
Vol 2138 (1) ◽  
pp. 012016
Author(s):  
Shuangling Zhu ◽  
Guli Nazi·Aili Mujiang ◽  
Huxidan Jumahong ◽  
Pazi Laiti·Nuer Maiti

Abstract A U-Net convolutional network structure is fully capable of completing the end-to-end training with extremely little data, and can achieve better results. When the convolutional network has a short link between a near input layer and a near output layer, it can implement training in a deeper, more accurate and effective way. This paper mainly proposes a high-resolution remote sensing image change detection algorithm based on dense convolutional channel attention mechanism. The detection algorithm uses U-Net network module as the basic network to extract features, combines Dense-Net dense module to enhance U-Net, and introduces dense convolution channel attention mechanism into the basic convolution unit to highlight important features, thus completing semantic segmentation of dense convolutional remote sensing images. Simulation results have verified the effectiveness and robustness of this study.


Author(s):  
Teerapong Panboonyuen ◽  
Kulsawasd Jitkajornwanich ◽  
Siam Lawawirojwong ◽  
Panu Srestasathiern ◽  
Peerapon Vateekul

In remote sensing domain, it is crucial to automatically annotate semantics, e.g., river, building, forest, etc, on the raster images. Deep Convolutional Encoder Decoder (DCED) network is the state-of-the-art semantic segmentation for remotely-sensed images. However, the accuracy is still limited, since the network is not designed for remotely sensed images and the training data in this domain is deficient. In this paper, we aim to propose a novel CNN network for semantic segmentation particularly for remote sensing corpora with three main contributions. First, we propose to apply a recent CNN network call ''Global Convolutional Network (GCN)'', since it can capture different resolutions by extracting multi-scale features from different stages of the network. Also, we further enhance the network by improving its backbone using larger numbers of layers, which is suitable for medium resolution remotely sensed images. Second, ''Channel Attention'' is presented into our network in order to select most discriminative filters (features). Third, ''Domain Specific Transfer Learning'' is introduced to alleviate the scarcity issue by utilizing other remotely sensed corpora with different resolutions as pre-trained data. The experiment was then conducted on two given data sets: ($i$) medium resolution data collected from Landsat-8 satellite and ($ii$) very high resolution data called ''ISPRS Vaihingen Challenge Data Set''. The results show that our networks outperformed DCED in terms of $F1$ for 17.48% and 2.49% on medium and very high resolution corpora, respectively.


2020 ◽  
Vol 12 (9) ◽  
pp. 1501
Author(s):  
Chu He ◽  
Shenglin Li ◽  
Dehui Xiong ◽  
Peizhang Fang ◽  
Mingsheng Liao

Semantic segmentation is an important field for automatic processing of remote sensing image data. Existing algorithms based on Convolution Neural Network (CNN) have made rapid progress, especially the Fully Convolution Network (FCN). However, problems still exist when directly inputting remote sensing images to FCN because the segmentation result of FCN is not fine enough, and it lacks guidance for prior knowledge. To obtain more accurate segmentation results, this paper introduces edge information as prior knowledge into FCN to revise the segmentation results. Specifically, the Edge-FCN network is proposed in this paper, which uses the edge information detected by Holistically Nested Edge Detection (HED) network to correct the FCN segmentation results. The experiment results on ESAR dataset and GID dataset demonstrate the validity of Edge-FCN.


Sign in / Sign up

Export Citation Format

Share Document