scholarly journals Design and implementation of fuzzy sliding mode controller for switched reluctance motor

Author(s):  
M. A. A. Morsy ◽  
M. Said A. Moteleb ◽  
H. T. Dorrah
2013 ◽  
Vol 274 ◽  
pp. 369-373
Author(s):  
Yong Qin Zhou ◽  
Rui Liu ◽  
Yan Guang Cui ◽  
Xu Dong Wang

For the shortcomings of the torque ripple of switched reluctance motor (SRM), this paper presents a strategy of controlling switched reluctance motor drive (SRD) with fuzzy sliding mode controller. The speed loop uses the conventional PI regulator, and the current loop adopts the fuzzy sliding mode controller which takes the current deviation as switching function and combines with fuzzy reasoning to determine the value of switching gain. The fuzzy sliding mode controller will realize the precise current control and enhance the stability of the system. The simulation results show that the system can suppress the torque ripple effectively and realize high-performance SRD control.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Rafiq Mufti ◽  
Qarab Raza Butt ◽  
S. Iqbal ◽  
M. Ramzan

The inherent problem of chattering in traditional sliding mode control is harmful for practical application of control system. This paper pays a considerable attention to a chattering-free control method, that is, higher-order sliding mode (super twisting algorithm). The design of a position controller for switched reluctance motor is presented and its stability is assured using Lyapunov stability theorem. In order to highlight the advantages of higher-order sliding mode controller (HOSMC), a classical first-order sliding mode controller (FOSMC) is also applied to the same system and compared. The simulation results reflect the effectiveness of the proposed technique.


2020 ◽  
Vol 10 (12) ◽  
pp. 4070
Author(s):  
Pulivarthi Nageswara Rao ◽  
Nallapaneni Manoj Kumar ◽  
Sanjeevikumar Padmanaban ◽  
M. S. P. Subathra ◽  
Aneesh A. Chand

The bearingless concept is a plausible alternative to the magnetic bearing drives. It provides numerous advantages like minimal maintenance, low cost, compactness and no requirement of high-performance power amplifiers. Controlling the rotor position and its displacements under parameter variations during acceleration and deceleration phases was not effective with the use of conventional controllers like proportional–integral–derivative (PID) and fuzzy-type controllers. Hence, to get the robust and stable operation of a bearingless switched reluctance motor (BSRM), a new robust dynamic sliding mode controller has been proposed in this paper, along with a sensorless operation using a sliding ode observer. The rotor displacement tracking error functions and speed tracking error functions are used in the designing of both proposed methods of the sliding mode switching functions. To get a healthy and stable operation of the BSRM, the proposed controller’s tasks are divided into three steps. As a first step, the displaced rotor in any one of the four quadrants in the air gap has to pull back to the centre position successfully. The second step is to run the motor at a rated speed by exciting torque phase currents, and finally, the third step is to maintain the stable and robust operation of the BSRM even under the application of different loads and changes of the motor parameters. Simulation studies were conducted and analysed under different testing conditions. The suspension forces, rotor displacements, are robust and stable, and the rotor is pulled back quickly to the centre position due to the proposed controller’s actions. The improved performance characteristics of the dynamic sliding mode controller (DSMC)-based sliding mode observer (SMO) was compared with the conventional sliding mode controller (SMC)-based SMO.


Sign in / Sign up

Export Citation Format

Share Document