A real-time control of maglev system using neural networks and genetic algorithms

Author(s):  
Z. Daghooghi ◽  
M. B. Menhaj ◽  
A. Zomorodian ◽  
A. Akramizadeh
1998 ◽  
Vol 38 (3) ◽  
pp. 187-195
Author(s):  
Pavel Hajda ◽  
Vladimir Novotny ◽  
Xin Feng ◽  
Ruoli Yang

This paper describes a pilot-scale implementation of a simple, real-time control (RTC) algorithm based on feedback and also outlines the development and simulation testing of a new RTC methodology that combines genetic algorithms (GAs) and artificial neural networks (ANNs). Computer simulations indicated that the simple feedback logic could reduce pumping by 50 to 80 percent if used to replace the existing RTC system in the test area. Experience with the algorithm after its implementation has confirmed the potential of the algorithm to reduce pumping. Additional simulations with an emerging approach to control (based on GAs) indicated possibilities of reducing pumping still further. Although relatively simple flow routing was used in the GAs, these algorithms do not restrict flow routing to any particular method. If highly accurate flow routing is incorporated, GAs are likely to be rendered too slow for on-line applications. Nevertheless, GAs can still be used, because they can be combined with fast executing on-line algorithms, such as ANNs. This possibility was demonstrated by training a multi-layer ANN to approximate one of the GAs developed. In verification runs the trained ANN provided virtually the same control decisions as did the GA used as the source of the training data.


2019 ◽  
Vol 37 (3) ◽  
pp. 699-717 ◽  
Author(s):  
Qi-Ming Sun ◽  
Hong-Sen Yan

Abstract In this paper, a multi-dimensional Taylor network (MTN) output feedback tracking control of nonlinear single-input single-output (SISO) systems in discrete-time form is studied. To date, neural networks are generally used to identify unknown nonlinear systems. However, the neuron of neural networks includes the exponential function, which contributes to the complexity of calculation, making the neural network control unable to meet the real-time requirements. In order to identify the controlled object whose model is unknown, the MTN, which requires only addition and multiplication, is utilized for successful real-time control of the SISO nonlinear system based on only its output feedback. Lyapunov analysis proves that output signals in the closed-loop system remain bounded and the tracking error converges to an arbitrarily small neighbourhood around the origin. In contrast to the back propagation (BP) neural network self-adaption reconstitution controller, the edge of the scheme is that the MTN optimal controller promises desirable response speed, robustness and real-time control.


Sign in / Sign up

Export Citation Format

Share Document