Predictive flux and torque control of induction motor drive under post-fault operation of three-phase voltage inverter

Author(s):  
Piotr Sobanski ◽  
Teresa Orlowska-Kowalska
2019 ◽  
Author(s):  
R. Senthil Kumar ◽  
S. Jayanandhini ◽  
J. Jenisha ◽  
M. Jayalakshmi ◽  
S. Madhumitha

2019 ◽  
Vol 8 (3) ◽  
pp. 8104-8116

In this paper a three phase voltage regulator (thyristor based) with RL load and induction motor load is simulated for fixed firing angle first. As was seen from the results obtained that the induction motor response is highly impaired with this fixed firing angle starting. The transient response as well as the steady state response is highly oscillatory in nature. Then a suitable firing scheme was developed to vary the firing angles of each thyristor in reference to the zero crossing of the respective phase voltages. The control circuit was studied for R-L load first and then the induction motor was simulated with this firing angle control scheme. The basic objective of this work is to improve the transient response of the voltage regulator fed induction motor. One basic requirement for the induction motor to have an improved transient response is that the applied voltage to the motor must gradually increase. The same was achieved with the proposed control logic. Next the fault mode (short circuit and open circuit switch fault) analysis of the induction motor was taken up. Till now not much work has been done on this fault tolerant induction motor drive. Here a 2-phase close loop control was adopted to improve response of the induction motor in fault mode. We used both the voltage control loop as well as the current control loop to do so. Unfortunately not much can be done on this fault tolerant operation as the time was very short. Till the speed and torque pulsation during a short circuited switch fault was greatly improved by adopting this two phase control strategy.


2021 ◽  
Vol 11 (6) ◽  
pp. 2863
Author(s):  
Ondrej Lipcak ◽  
Pavel Karlovsky ◽  
Pavel Kobrle ◽  
Jan Bauer

The current and torque ripple of inverter-fed induction motor drives is an inherent problem of control strategies working with switching frequencies in the range of multiple kilohertz, such as direct torque and, more recently, predictive torque control. If the drive operates in a wide-speed and wide-torque range and is equipped with a machine with an accessible terminal block whose winding is nominally connected in delta, then the current and torque ripple can be reduced by utilizing the delta-star winding changeover technique. When the winding configuration is switched from delta to star, the instantaneous motor phase voltage peak is lowered, and its total harmonic distortion is reduced. However, the control strategy must be adjusted according to the actual winding topology, mainly due to the difference in the coordinate transformations of the measured currents and the difference between the phase voltage vectors obtained from the inverter. This paper proposes a predictive torque control of an induction motor drive with a switchable delta-star winding configuration. The paper is supported by theoretical background, and the key idea is verified by simulations in MATLAB/Simulink and experiments conducted on a dSPACE-controlled 5.5-kW laboratory drive. The simulations validated the presented equations and show the effects of not respecting the actual winding topology. The experiments mainly focused on analyzing the total harmonic distortion of the currents and consumed electrical power in multiple operating points.


Sign in / Sign up

Export Citation Format

Share Document