Detection Of Induction Motor Bearing Damage With Starting Current Analysis Using Wavelet Discrete Transform And Artificial Neural Network

Author(s):  
Eva Navasari ◽  
Dimas Anton Asfani ◽  
Made Yulistya Negara
SINERGI ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 33
Author(s):  
Gigih Priyandoko ◽  
Istiadi Istiadi ◽  
Diky Siswanto ◽  
Dedy Usman Effendi ◽  
Eska Riski Naufal

Induction motor is electromechanical equipment that is widely used in various industrial applications. The research paper presents the detection of the defect to three-phase induction motor bearing using discrete wavelet transforms and artificial neural networks to detect whether or not the motor is damaged. An experimental test rig was made to obtain data on healthy phase currents or damaged bearings on the induction motor using the motor current signature analysis (MCSA) method. Several mother-level wavelets are chosen on the wavelet method from the obtained current signal. The feature of the wavelet results is used as an input of the Artificial Neural Network to classify the condition of the induction motor. The results showed that the system could provide an accurate diagnosis of the condition of the induction motor.


Author(s):  
Massine GANA ◽  
Hakim ACHOUR ◽  
Kamel BELAID ◽  
Zakia CHELLI ◽  
Mourad LAGHROUCHE ◽  
...  

Abstract This paper presents a design of a low-cost integrated system for the preventive detection of unbalance faults in an induction motor. In this regard, two non-invasive measurements have been collected then monitored in real time and transmitted via an ESP32 board. A new bio-flexible piezoelectric sensor developed previously in our laboratory, was used for vibration analysis. Moreover an infrared thermopile was used for non-contact temperature measurement. The data is transmitted via Wi-Fi to a monitoring station that intervenes to detect an anomaly. The diagnosis of the motor condition is realized using an artificial neural network algorithm implemented on the microcontroller. Besides, a Kalman filter is employed to predict the vibrations while eliminating the noise. The combination of vibration analysis, thermal signature analysis and artificial neural network provides a better diagnosis. It ensures efficiency, accuracy, easy access to data and remote control, which significantly reduces human intervention.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Abolfazl Halvaei Niasar ◽  
Hossein Rahimi Khoei

This paper proposes the design of sensorless induction motor drive based on direct power control (DPC) technique. It is shown that DPC technique enjoys all advantages of pervious methods such as fast dynamic and ease of implementation, without having their problems. To reduce the cost of drive and enhance the reliability, an effective sensorless strategy based on artificial neural network (ANN) is developed to estimate rotor’s position and speed of induction motor. Developed sensorless scheme is a new model reference adaptive system (MRAS) speed observer for direct power control induction motor drives. The proposed MRAS speed observer uses the current model as an adaptive model. The neural network has been then designed and trained online by employing a back propagation network (BPN) algorithm. The estimator was designed and simulated in Simulink. Some simulations are carried out for the closed-loop speed control systems under various load conditions to verify the proposed methods. Simulation results confirm the performance of ANN based sensorless DPC induction motor drive in various conditions.


Sign in / Sign up

Export Citation Format

Share Document